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Abstract

In this paper, we first prove analytically that the skewness of returns of portfolios built

with Arrow-Debreu securities decreases with diversification. Through simulations, we also

show that this result remains true in a financial market with a finite number of states of

nature. We then analyze the behavior of over 85,000 individual investors at a large brokerage

house. Though the main determinant of underdiversification is the portfolio value we find

that the skewness of returns remains significant in explaining diversification after controlling

for this value. Moreover, we show that the decrease in skewness induced by diversification

is essentially driven by the share of total variance of stock returns due to common factors.

These findings extend those of Mitton and Vorkink (2007) and explain the variability over

time of the relationship between skewness and diversification.
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In an economy governed by the standard theory of portfolio choice (Markowitz, 1952), investors

hold diversified portfolios. These investors seek returns with a high first moment and a low second

moment. The actual economy presents a substantially different reality. Lease et al. (1974) and

Blume and Friend (1975), followed by Kelly (1995), were the first to highlight the underdiversifi-

cation of portfolios held by retail investors. More recently, a number of empirical studies (Odean

1999, Kumar 2007, Mitton and Vorkink 2007, Goetzman and Kumar 2008), using large datasets,

have shown that individual investors hold largely underdiversified portfolios, which contain fewer

than five stocks on average1.

In the theoretical literature, several complementary explanations are provided for underdiversi-

fication. Some explanations are linked to skewness seeking by investors (Brunnermeier and Parker,

2005, Brunnermeier et al., 2007, Mitton and Vorkink 2007, Barberis and Huang 2008), whereas

others are based on the existence of solvency constraints for investors and/or on the existence of

market imperfections, such as transaction costs (Liu 2010).

The first contribution of this paper is theoretical. In an Arrow-Debreu economy with a finite

number of states of nature, we prove that the skewness of returns of equally weighted portfolios of

pure contingent claims decreases when the number of different securities in the portfolio increases2.

Considering the first measure of diversification used by Mitton and Vorkink (2007), that is, the

inverse of the number of stocks held, we show that the variance of portfolio returns is a linear

function of this measure and that the third central moment is a quadratic function of the same

measure. Through simulations, we show that this result generally remains true (in a finite-state

space) for stock portfolios3.

Our second contribution is empirical: through a detailed analysis of the trading records and

portfolios of 87,373 individual investors, we show that return skewness is an important explanatory

1Calvet et al. (2007) obtained similar results for Sweden with the exception that Swedish investors appear to
have slightly more diversified portfolios than U.S. investors.

2Simkowitz and Beedles (1978) and Conine and Tamarkin (1981) already note that diversification may decrease
the skewness of returns.

3Harvey and Siddique (1999, 2000) and Chen et al. (2001) show that the average skewness of single stocks is
positive in most periods and that the market skewness is negative most of the time. More recently, Albuquerque
(2011) obtained the same results except for the second half of 1987 (due to Black Monday). The skewness of the
equally weighted market portfolio is negative 77% of the time.
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variable of diversification choices, even after controlling for portfolio value. Mitton and Vorkink

(2007) obtained the same result but did so without controlling for portfolio value. In fact, portfolio

value has been shown to be the main determinant of diversification choices, which supports Liu’s

model which is based on the assumption that retail investors are subject to solvency constraints.

Liu shows that the number of stocks in one’s portfolio is an increasing function of the amount to

be invested in the stock market. However, in his model, only the first moment of the probability

distribution of returns is important for single-stock owners. As mentioned above, our results

indicate that the skewness of returns is also important for diversification choices.

Our third contribution aims to explain why the link between the decrease in skewness due

to diversification is highly variable over time. For example, Mitton and Vorkink (2007) find a

difference in skewness between single stocks and diversified portfolios equal to 0.2 in January 1991,

0.36 in January 1993 and 0.54 in January 1996. We show that this variability is essentially due

to the evolution of the aggregate share of variance due to common factors or, more simply, to

the average correlation of stock returns. In a multi-factor model à la Chamberlain and Rotschild

(1983) with, for example, K common factors, the reduction in skewness due to diversification is a

decreasing function of the sum of the K first eigenvalues of the covariance matrix of returns (in

percentage of the trace). We first show this relationship in simulated markets and confirm it on

our data. This important result shows that in bear markets (where market volatility _ or volatility

due to common factors _ is higher), underdiversification does not significantly increase skewness.

However, diversification does not substantially reduce the portfolio variance because systematic

risk is the most important component of the total risk during these periods.

The paper is organized as follows. The first section reviews the literature on portfolios’(un-

der)diversification and skewness seeking by investors. In section 2, we present the analytical and

simulation results in Arrow-Debreu markets. Section 3 describes our database and section 4 details

our empirical results. The last section concludes the paper.
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1 Related literature

The search of positive skewness in portfolio returns may be justified by two psychological traits.

First, the propensity to gamble may lead to the preference for positively skewed portfolios in the

hope of gaining a high return, even with a very low probability. Investors with such preferences

prefer lottery-type stocks with low prices, high idiosyncratic volatility and high skewness (Kumar

2009, Bali, Cakici and Whitelaw 2011). Meanwhile, preferring high skewness may simply reveal

prudent behavior in the manner described by Kimball (1990). In this case, investors are said to

be downside risk averse (Menezes et al. 1980, Eeckhoudt and Schlesinger, 2006), and their utility

function is mainly characterized by a positive third-order derivative. Several recent experimental

studies show that approximately 60% of participants are prudent when faced with lottery choices.

Their decision process is therefore compatible with positive skewness seeking (Tarazona-Gomes

2004, Deck and Schlesinger 2010, Ebert and Wiesen 2011). If underdiversification is a means of

capturing high skewness, then investors who choose their optimal portfolios, considering not only

the first two moments of the distribution of returns but also the third one, will build underdiversi-

fied portfolios. In fact, one of the first attempts to introduce the third moment of the distribution

of returns in a portfolio choice model was proposed by Kraus and Litzenberger (1976), followed

by Harvey and Siddique (2000), who provided empirical support for this model. More recently,

Mitton and Vorkink (2007) also based their theoretical analysis on a three-moment model and

show that heterogeneity in the preference for skewness induces underdiversification in equilibrium.

In the framework of non-expected utility models, the desirability of positive skewness appears

to occur because investors distort probabilities. Shefrin and Statman (2000), in their behavioral

portfolio theory, consider that investors’decisions are driven by a mix of hope and fear. Hope (fear)

tends to transform probabilities in an optimistic (pessimistic) way. According to this approach,

optimal portfolios are, roughly speaking, composed of a risk-free asset (motivated by fear) combined

with a lottery ticket (the hope to become rich). Such a portfolio is obviously positively skewed.

Barberis and Huang (2008) assume that investors obey Cumulative Prospect Theory (Tversky

and Kahneman 1992). Their utility functions are concave for gains and convex for losses. Moreover,
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they distort probabilities in such a way that extreme outcomes are overweighted. When a positively

skewed asset is traded on the market, it becomes overpriced because of the overweighting of the

largest positive outcomes. Cumulative Prospect Theory (CPT) overweights the two tails of the

distribution of outcomes; it leads investors to avoid large losses and to seek large gains, even if

the corresponding objective probability is very low. Again, the result is that positive skewness is

attractive for such investors.

One potential drawback of CPT is that the transformation of probabilities is "exogenous" in

the sense that it depends solely on the ranking of outcomes, not on their values. Consider, for

example, two successive draws of a state lottery, and assume that the jackpot is not hit at the first

draw. At the second draw, the potential outcomes are almost identical, except for the jackpot,

which has increased between the two draws because of the rollover. An agent obeying CPT does

not change the weights of the outcomes because the objective probability of hitting the jackpot is

the same and this event is still ranked first.

Consequently, Brunnermeier and Parker (2005) go one step further by introducing the distorted

probability measure as a decision variable, referring to optimal expectations or optimal beliefs.

They consider a forward-looking investor who, when making a decision, maximizes the average

of her current (anticipatory) utility and her expected future utility. The anticipatory utility is

higher when the investor is optimistic about future prospects. This distortion of beliefs leads to

suboptimal investment decisions in terms of resource allocation and portfolio choice. Nevertheless,

these authors show that a slightly optimistic change in beliefs generates a first-order gain in current

utility but only a second-order loss in future utility due to suboptimal investment decisions. In

the same vein, Gollier (2005) shows that optimal expectations correspond to beliefs focusing on

the best and the worst state.

It is then not optimal for such agents to select a portfolio under the real probability measure

(as rational agents do). Brunnermeier et al. (2007), building on Brunnermeier and Parker (2005),

elaborate a simple model of a complete market of Arrow-Debreu securities and conclude that the

probability of one state is overvalued while the probabilities of the other states are undervalued by

such investors. They obtain an optimal portfolio that has the same shape as that found by Shefrin
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and Statman (2000), that is, a risk-free asset combined with a positively skewed asset (equivalent

to a lottery ticket).

The attractiveness of positive skewness in returns can also be caused by a type of "jackpot

effect", such as in-state lotteries. It is now well documented that the demand for state lotteries is

essentially determined by the jackpot size, meaning that players are attracted by the best outcome,

even if the corresponding objective probability of occurrence is infinitesimal (Cook and Clotfelter

1993, Garrett and Sobel 1999, Walker and Young, 2001, Forrest et al. 2002). In stock markets, this

effect has been recently illustrated by Kumar (2009) and Bali, Cakici and Whitelaw (2010). Kumar

shows that for some categories of individual investors, there is a strong link between portfolio choice

and behavior in gambling markets such as state lotteries. More precisely, those who are prone to

betting on state lotteries are also prone to choosing low-priced stocks with high idiosyncratic risk

and high positive skewness. Bali, Cakici and Whitelaw (2010) do not analyze the behavior of

individual investors, instead ranking stocks according to their maximum one-day return over the

previous month. They find that future returns are a decreasing function of this one-day maximum

return. In other words, lottery-like stocks are overpriced. They also show the persistence of this

ranking over time by calculating transition probability matrices from one month to the next. A

total of 35% of stocks in the highest decile for one month are in the same decile the following

month.

Whatever the interpretation, the credo of diversification becomes at stake when preference

for positive skewness is introduced in the decision process. In fact, diversification reduces both

(undesirable) idiosyncratic volatility and (desirable) positive skewness.

2 Skewness and diversification: the case of Arrow-Debreu

markets

In this section, we start by developing analytical formulas for the first three moments of equally

weighted portfolios of Arrow-Debreu (henceforth, AD) securities and link these results to usual
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measures of diversification. More precisely, when diversification is measured by the inverse of the

number of stocks in portfolios, the variance of portfolio returns is a linear function of the diversifi-

cation index, and the third central moment of returns is a quadratic function of the diversification

measure. In the next subsection, simulations provide a means of extending this result to more

general frameworks.

2.1 Moments of portfolios of Arrow-debreu securities (AD securities)

Let Ω = {ω1, ..., ωn} denote a finite state-space with n equally-likely states of nature and assume

that all Arrow-Debreu securities, denoted X1, ...Xn, are traded. Xi pays 1 in state ωi and 0

elsewhere. (p1, ..., pn) stands for a sequence of equally-weighted portfolios containing respectively

1, 2...n, AD securities. Without loss of generality, we assume that pk contains 1/k units of each of

the first k securities4.

Before analyzing portfolios, we briefly recall the elementary properties of the moments of AD

securities.

Proposition 1 For any 1 ≤ k ≤ n,

E(Xk) = mk =
1

n
(1)

V (Xk) =
n− 1

n2
(2)

E
[
(Xk −mk)

3
]

=
(n− 1)(n− 2)

n3
(3)

cov(Xk, Xk∗) = − 1

n2
if k 6= k∗ (4)

Proof. See the Appendix

Consider now a portfolio pk invested in the first k AD securities and denote µk (σ
2
k) the expec-

tation (variance) of payoffs of pk.

4Because states are equally likely, there is no reason to consider different prices for AD securities. Investing 1/k
in each of the first k securities then generates a cost independent of k.
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Proposition 2

∀k, µk =
1

n

σ2k =
1

n

(
1

k
− 1

n

)
(5)

Proof. See the Appendix

The inverse of the number of stocks in portfolios is often considered a measure of diversification

(denoted D1 by Mitton and Vorkink (2007)). Proposition 2 shows that the variance of returns

increases linearly with D1. When k = n, the portfolio is risk-free and the variance of payoffs is

equal to 0.

Denote now s3k the third central moment of pk defined by:

s3k = E((
1

k

∑k

j=1
Xj − µk)3) =

1

k3
E((
∑k

j=1
Xj −

k

n
)3) (6)

Denoting Yk =
∑k

j=1
Xj gives s3k = 1

k3
E((Yk − k

n
)3). The specificities of AD securities imply

that E(Y 3
k ) = E(Y 2

k ) = k
n
. In fact, these relations simply come from the fact that Xm

j X
t
j∗ = 0 for

any pair (m, t) of strictly positive integers and different indices j and j∗. We now get easily s3k.

Proposition 3 The central third moment of pk is valued:

s3k =
1

n3

[(n
k
− 1
)(n

k
− 2
)]

(7)

Proof. See the Appendix

We know that k < n; consequently an equally weighted portfolio has a positive skewness as

long as the number of AD securities that it contains is lower than n/2. Beyond this threshold,

skewness becomes negative. When n is even, the distribution of returns is symmetric for k = n/2,

leading to a zero skewness for the portfolio return. Using the above diversification measure D1,
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we find that the third-order moment increases quadratically in D1. In fact, we have the following:

s3k =
1

n

[(
D1 −

1

n

)(
D1 −

2

n

)]
(8)

We can also establish a very simple relationship between s3k and σ
2
k using equations 5 and 7.

s3k = σ2k

(
D1 −

2

n

)
(9)

Insert Table 1 around here

Table 1 shows the evolution of variance and third-central moment as a function of the number

of AD securities in portfolios when n = 20. The third moment becomes slightly negative when the

number of AD securities is greater than 10 but the variance decreases at a faster rate. This finding

implies that standardized skewness, defined as s3k/σ
3
k becomes largely negative when the portfolio

is suffi ciently diversified (see Figure 1). This remark is in line with the abovementioned positive

skewness of single-stock returns and negative skewness of highly diversified portfolios. Positive

skewness observed for single stocks (the most common case) is often explained by an overreaction

to good news and underreaction to bad news (Nagel, 2005, Xu, 2007). When estimating the

skewness of a single-stock with a time-series of returns, it is common to find sequences of returns

with one or a few very high values due to overreaction and a number of low or moderate values

due to underreaction. This shape leads to a positive estimation of skewness. When considering the

time-series of returns of a diversified portfolio, isolated high values are less likely because good news

does not come at once for all stocks in the portfolio. On the contrary, it is well documented that

correlations of stock returns increase in hard times5. Consequently, low returns are more likely

to be observed simultaneously, leading to negative skewness for portfolio returns. A "similar"

phenomenon is observed with portfolio of Arrow-Debreu securities. The payoff of a single AD is

typically positively skewed, paying 1 in one state and 0 otherwise. An equally weighted portfolio

5For international equity returns, Longin and Solnik (2001) show that the asymmetry of correlations is statis-
tically significant. Campbell et al. (2002) and Ang and Bekaert (2002, 2004) also identify asymmetric correlation
between bull and bear regimes, higher correlations appearing in the bear regime and lower correlations in the bull
regime.
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comprising a large number (say k) of AD securities pays 1/k on k states and 0 on the remaining

n− k states. When k approaches n, the portfolio payoff becomes negatively skewed because losses

are less likely but larger (for a given initial investment).

Insert Figure 1 around here

2.2 Simulations

2.2.1 Portfolios of Arrow-Debreu securities

The preceding section assumes equal weights in portfolios, allowing simple analytical results to

be obtained concerning the evolution of skewness as a function of the number of Arrow-Debreu

securities. To determine whether this finding remains true in a more general framework, we

simulate portfolio weights in the following way. Still considering 20 states of nature, we randomly

select, for each number m between 2 and 19, 1000 portfolios of m securities. For a given m-

security portfolio, we drawm random numbers x1, ..., xm between 0 and 100 and define the weights

as wk = xk/
∑m

j=1 xj. We consider only positive weights since individual investors almost never

engage in short-selling.

Insert Figure 2 around here

For each m, we calculate the average skewness and the 99% confidence bounds (5th lowest and

5th highest skewness in a sample of 1000 portfolios).

Figure 2 shows the evolution of the average skewness and the confidence bounds as well (dashed

lines). Of course, there is no uncertainty for single-stock portfolios because of the analytical so-

lution given in the proposition 1. The average skewness of simulated portfolios is always positive

regardless of the number of stocks in the portfolios. It approaches 0 only for the maximum number

of stocks. At first glance, this finding could seem surprising because in the equally weighted case of

the preceding section, the skewness was negative when k > n/2. The reason for this phenomenon

is that portfolio weights are simulated according to a uniform multidimensional distribution. It is

revealed that the proportion of portfolios close to the equally weighted case is very low and that
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these are the portfolios with the lowest skewness. The bold curve in figure 2 is comparable to

the results obtained by Mitton and Vorkink (2007, table 3, p. 1271), that is, it depicts a similar

evolution of skewness with respect to diversification. Consequently, it appears that underdiversi-

fication is an effective means of capturing high skewness. It is not even necessary to pick highly

skewed stocks to achieve a highly skewed portfolio. There is a "mechanical" relationship between

diversification and return skewness.

2.2.2 The general case

In a finite state-space, a stock is a portfolio of Arrow-Debreu securities. To generalize the above

results, we now consider n stocks traded on the n-state market. To generate the payoffs of stock

k, we first draw at random a number nk of AD-securities in the set of n assets. We then define the

payoffs of stock k by drawing nk random weights (summing to one), as in the preceding section.

We therefore build a (n, n) matrix of payoffs of single stocks, which corresponds to one simulated

market.

Taking a geometric approach to the problem is useful to understand the link between diversi-

fication and skewness. In the AD market, adding one AD security entails adding one dimension

to the space spanned by securities because AD securities are orthogonal vectors. However, usual

stocks, that is, portfolios of AD securities, may be correlated, and the dimension spanned by

stocks may be lower than the number of states. The probabilistic view of the same story is to say

that when market (idiosyncratic) risk represents a large (small) share of total variance, stocks do

not span a large space and diversification will not substantially decrease the skewness of portfolio

returns (compared to the skewness of single stocks).

Simulation is an interesting and simple way to determine whether our conjecture is true. Re-

member that empirical studies show that skewness decreases with diversification but that the

steepness of the slope changes over time. Mitton and Vorkink (2007) find a skewness difference

between single-stock portfolios and highly diversified portfolios equal to .2 in January 1991, .36 in

January 1993 and, finally, .54 in January 1996.

To introduce the methodology, consider the simple one-factor CAPM-like model. The variance
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of returns of a given stock k is equal to β2kσ
2
M + σ(εk)

2 where σ2M is the variance of the market

portfolio, βk is the β of stock k and σ(εk)
2 is the idiosyncratic variance of stock k. An estimate

of σ2M
∑n

k=1 β
2
k/
∑n

k=1 σ
2
k is given by the first eigenvalue of the covariance matrix of returns (as a

percentage of the trace of the covariance matrix which is
∑n

k=1 σ
2
k).

More generally, in an m-factor model, the variance due to common factors is the sum of the m

first eigenvalues (as a percentage of
∑n

k=1 σ
2
k). Our conjecture is then that the average skewness

decreases faster with diversification when the variance due to common factors is low. Consequently,

the rank correlation between the decrease in skewness and the share of variance due to common

factors should be significantly negative.

It is well-known that estimating the number of common factors by using a principal component

analysis (as suggested by Chamberlain and Rotschild, 1983) is diffi cult because there is a bias

towards the identification of a single-factor model in finite samples (Harding, 2007). To take this

bias into account, we allow up to m = 5 common factors in the analysis.

For a given simulated market, we measure the decrease in skewness due to diversification by the

difference between the average skewness of single stocks and the skewness of an equally weighted

portfolio of all stocks.

Insert Table 2 around here

Table 2 summarizes the results. Panel A (B, C) gives the main results when there are 20 (60,

100) assets traded on the market and the same number of states of nature. In each panel, the first

line displays the average cumulated percentage of variance for them first factors wherem = 1, .., 5.

The second line provides the Spearman rank correlation between this percentage of variance and

the decrease in skewness. Naturally, because these correlations are valued over 1,000 simulations,

they are significant at all the standard levels. For example, in panel A, the first factor represents

(on average) 24.06% of the global variance. If stock returns were independent, this figure would

be 5% with 20 states of nature. The rank correlation in the one-factor model is equal to -0.469

and is the correlation between the vector of decreases in skewness and the vector of percentages

of "market" variance. The other figures in the table are interpreted in the same way.
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These results show that if underdiversification generates skewness, a given level of diversification

is likely to provide different levels of skewness depending on the market conditions. In particular,

we mentioned earlier that bearish markets tend to increase the average correlation between stock

returns (Longin and Solnik, 2001, Campbell et al., 2002, Ang and Bekaert, 2002, 2004), meaning

that the percentage of variance linked to common factors is higher. We then observe a lower

decrease in skewness due to diversification. In the next section, we illustrate this point using our

large sample of individual investors. In fact, a low percentage of simulations leads to an increase in

skewness (6.6%, 2.4% and 2.7% in panels A, B and C, respectively) when the number of stocks in

the portfolio increases, meaning that the equally weighted portfolio is more positively skewed than

the average stock. These cases correspond to high levels of market variance. For these situations,

30.1% (20.03%, 16.8%) of variance stems from the first factor, compared to an average of 24.06%

(14.27%, 11.79%) in table 2.

3 Data and descriptive statistics

3.1 Investors data

The data on individual investors come from a large French brokerage house. We obtained trans-

action data for all active accounts over the period 1999-2006, that is, nine million trades made

by 92,603 investors. The file of trades combines the following information for each trade: the

ISIN code of the asset, buy-sell indicator, date, quantity and amount in Euros. In the investors

file, some demographical characteristics of investors are gathered: date of birth, gender, date of

entry into and exit from the database, opening and/or closing dates of all accounts and region of

residence.

Some investors open an account within this period, while some others close their account before

the end of the period. As it would make no sense to analyze portfolios by the day (due to the low

turnover of portfolios), we chose to "take a photograph" of portfolios at the end of each month.

It turns out that some investors may hold no position in a given month, even if they held a
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portfolio before and continued trading later. We deleted investors with positions on stocks for

which price data were not available for at least one year and portfolios worth less than 100 €.

Finally, 87,373 investors were considered in the analysis (they held stocks at least two successive

months in the period), but their number varies over time. A total of 8,258,809 trades remain in

our final database. On average, the number of investors in a month is 51,340, with a minimum of

34,230 and a maximum of 60,001.

Figure 3 shows three time-series. The upper dotted curve represents the average number of

stocks held by investors (×104). The value of this curve varies from 5.5 to 6.8, and the median is 3 or

4 for the entire period. The difference between median and mean is explained by a low percentage

of investors holding largely diversified portfolios with several hundred stocks. These figures show

that it is reasonable to postulate that individual investors hold underdiversified portfolios. The

striking feature of this curve is the sharp increase in the average number of stocks just before the

dotcom bubble burst, that is, during the first months of 2000. A decrease to the former level

of diversification is observed following this event. For the remainder of the period, the average

number of stocks is roughly stable. The evolution of the number of stocks is different from that

observed by Goetzman and Kumar (2008) on a sample of U.S. investors. As mentioned before,

the authors found an increase in diversification over the period 1991-1996 because the market was

bullish for almost the entire period.

The middle bold curve and the bottom dashed curves provide the evolution of the mean and

median portfolio values, respectively. Starting in the first month of January 1999, it appears that

the average portfolio value follows the evolution of the market as a whole. A sharp increase in

value appears in the first 15 months, up to the bursting of the Internet bubble in April 2000. Then,

portfolio values decrease until April 2003 (the market bottom), and, finally, a partial recovery is

observed between 2003 and the end of our period (December 2006). Consequently, the evolution

of average portfolio values in our sample does not differ from the evolution of the stock market.

[Insert Figure 3 around here]

As for the number of stocks in portfolios, there is a large discrepancy between the mean and
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median portfolio values, a result in line with other studies on individual investors. In fact, a

few investors are very wealthy, compared to the average investor; they move upward the average

portfolio value in a significant way. It is worth to mention that 0.2% of investors hold a stock

portfolio worth over one million euros.

Table 3 provides some additional detailed statistics at three points in time, January 2000,

January 2003 and January 20066. We adopt the same presentation used in Table 2 of Mitton-

Vorkink (2007). At the end of each month, we divide investors into seven categories (first column

of Table 3). The first five contain investors holding one to five stocks, the sixth groups investors

with six to nine stocks and the last category groups all diversified investors with ten stocks or

more. The second column provides the number of investors in each category. The last four

columns provide summary statistics about portfolio values, namely, the mean, the first quartile,

the median and the third quartile. There is a large proportion (approximately 20%) of single-stock

owners, and in all categories, the mean portfolio value is much higher than the median, even among

single-stock owners. This finding reinforces the preceding remark about figure 3. In most cases,

the mean is close to the third quartile.

[Insert Table 3 around here]

The market activity of investors in our sample is also highly variable over time. Figure 4 shows

the time series of monthly trades. The bold (dashed) line represents buy (sell) trades. The large

variations are essentially observed in the three first years, with a dramatic increase found in the

two types of trades up to April 2000. Approximately 110,000 monthly buy trades were realized in

February, March and April 2000. An equivalent decrease is then observed up to September 2001.

Of course, even though the French market remained open after 9/11, the volume was considerably

lower that month.

In the last five years of our sample period, the average level of trades is approximately 35,000

trades per month on each side.

[Insert Figure 4 around here]
6The complete statistics for all months of the period are available upon request.
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3.2 Stock data

Price data come from two sources, Eurofidai for stocks traded on Euronext7 and Bloomberg for the

other stocks. We used daily prices to estimate the moments of the distribution of returns on stocks

and investors’portfolios. In our sample, the investment universe contains 2,491 stocks, meaning

that each of these stocks has been traded at least once over the sample period. There are 1,191

French stocks, the remaining coming from all over the world but essentially from the U.S. (1,020

stocks), the United Kingdom (62), the Netherlands (34), Germany (31) and Italy (15). Despite

the large number of U.S. stocks in our sample, the trades on French stocks count for over 90% of

the trading volume, as shown in panel A of table 4 which illustrates the well-known home bias

puzzle8. This phenomenon represents the reason why most comparisons in this paper are related

to the French market. Moreover, we observe that despite the large number of U.S. stocks, the

trading volume for these stocks is very low. Only 54,881 trades on U.S. stocks were executed,

compared, for example, to the 366,138 trades on the 34 Dutch stocks. Concerning holdings, panel

B of table 4 reports at the end of each year from 1999 to 2006 the proportion of investors holding

stocks of the 6 main countries in the database. For example, at the end of 2003, there were 56,952

investors holding stocks. A total of 96.97% of these investors held French stocks (meaning that

approximately 3% held only foreign stocks), 21.05% held Dutch stocks and only 3.97% held U.S.

stocks, despite the large number of U.S. stocks in the database (that is, stocks traded at least once

over the period).

[Insert Table 4 here]

3.3 Measures of diversification and skewness

Despite our theoretical results on Arrow-Debreu markets in section 2, it is unclear (in real markets)

whether underdiversified portfolios should bear more skewness. To answer this question we first

7http://www.eurofidai.org. Part of this database has been recently used by Foucault et al. (2011) in their study
of retail trading and volatility in the French market and by Baker et al. (2012) to study the contagion of sentiment
across countries, including France and the U.S.

8See Lewis (1999) and Karolyi and Stulz (2003) for a literature review on this topic.
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apply the methodology of Mitton and Vorkink (2007) to our sample. Using two portfolio diver-

sification measures, we rank the individual portfolios according to these measures and calculate

the mean and median skewness within each decile. If underdiversification is caused by skewness

seeking, skewness should be high for deciles of less diversified portfolios. We perform these calcu-

lations for each quarter, skewness being estimated with one quarter of daily returns9. We first use

returns subsequent to the portfolio formation date, as the realized skewness for a given portfolio

is the skewness of future returns. However, from a behavioral point of view, investors can base

their choices on the observation of past skewness. We then assess whether such a relationship also

appears between past skewness and diversification.

The two diversification measures, denoted D1 and D2, are defined as follows. D1 is simply the

inverse of the number of different stocks in the portfolio.

Dj
1 =

1

nj
(10)

where nj is the number of stocks in investor j’s portfolio. A low value of D1 is then associated

with a high level of diversification.

Though simple, this measure does not take into account the weighting of securities within

portfolios. Consequently, we introduce as D2 the Herfindahl index of the weights of securities in

the investor’s portfolio.

Dj
2 =

∑n

i=1
w2ij (11)

where wij is the weight of security i in investor j’s portfolio. D2 also takes higher values for lower

levels of diversification. The two measures are then positively correlated.

To measure the standardized skewness of portfolio returns, we use the usual estimate with one

quarter of daily returns

Ŝk
3

=

1
n

∑n

t=1
(rt − r)3

σ̂3
(12)

where r is the average daily return and σ̂3 the cube of the estimated standard deviation of daily

9The results (not reported here) are almost identical when considering one year of daily returns.
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returns. One advantage of equation (12) is that it is standardized by variance (or standard devi-

ation). This equation represents a way to take into account the mechanical positive link between

variance and skewness that is illustrated in section 2. However, in an expected utility framework,

the utility of random wealth is linked to the third moment of returns, not to the standardized

skewness.

4 Empirical results

In this section, we first perform an investor-level analysis. We analyze the link between under-

diversification and skewness in returns and confirm that the mechanical link obtained through

simulations also appears in real data. We develop our study by showing that the decrease in

skewness due to diversification is strongly driven by market conditions and, more precisely, by the

sharing of global variance between systematic and idiosyncratic variance. In other words, portfolio

skewness is essentially linked to the number of stocks in the portfolio and not as much to which

stocks are chosen to build the portfolio. To reinforce this conclusion, we use the approach of Mitton

and Vorkink (2007) to perform a stock-level analysis aiming to answer the following question: do

underdiversified investors concentrate on highly skewed stocks? In contrast to these authors, we

do not obtain a clear answer. The strength of the relationship is shown to depend on the sharing

of global variance between systematic and idiosyncratic variance.

Finally, through a panel data analysis, we show that the main determinant of diversification

choices is the amount to be invested in the portfolio. Nevertheless, return skewness remains a

significant explanatory variable of diversification choices after controlling for portfolio value.

4.1 Diversification and portfolio skewness

To study the link between diversification and skewness, we sort all investor portfolios into deciles

according to measures of diversification D1 and D2 at the beginning of each quarter. We calculate

the average value of Ŝk
3
within each decile, as well as the average returns and standard deviations
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(which are annualized in table 5). We cannot present the results for all quarters here so we take

the same three points in time as before10.

[Insert Table 5 here]

Table 5 provides the estimates made when subsequent returns are used to calculate moments.

Concerning D1, the number of investors differs between deciles because D1 is a discrete variable

(the inverse of the number of stocks). It is revealed that it is impossible to arbitrarily allocate

investors in different deciles when they have the same value for D1. Concerning the Herfindahl

index D2, this problem concerns only the single-stock holders. A consequence is that the number

of investors is the same for the two indices in the last decile (single-stock holders).

Whatever the diversification index under consideration, there is a stable relationship between

Di, i = 1, 2 and the second and third moments of the distribution of returns. A higher D indicates

lower diversification, higher variance and higher skewness. This relationship is consistent with

our theoretical results of section 2 and is in line with the empirical results of Mitton and Vorkink

(2007). In table 5 we adopt a presentation similar to their table 3 p.1271. panel A (B) corresponds

to the diversification measure D1(D2).

Choosing to underdiversify leads to a sacrifice in terms of variance to obtain a more positively

skewed distribution of returns. However, it is interesting to assess whether this argument is the

same when looking backward. In fact, when investors build their portfolios, their information is

based on past data. Consequently, they may choose to underdiversify and select portfolios on past

moments. Table 6 presents the same statistics as table 5 but the moments are estimated using the

quarter preceding the portfolio formation date. The relationship between skewness in returns and

diversification moves in the same direction; underdiversified portfolios exhibit a higher skewness,

even if, in some quarters, the difference in skewness is not so large between deciles. Given our

preceding theoretical and simulation results, these observations are not surprising.

[Insert Table 6 here]

10The results are similar for all periods and are available upon request.

19



When observing all quarters, skewness always decreases when diversification increases. How-

ever, over time, the mean level of skewness evolves according to market movements, and the same

observation can be performed regarding the variation of skewness between the first and the last

deciles. Figure 5 (resp. 6) represents the dynamics of median skewness for deciles 1 (resp. high

diversification, identified by stars), 5 (resp. medium diversification-squares) and 10 (resp. low

diversification-circles) for subsequent (resp. past) returns.

[Insert Figure 5 here]

[Insert Figure 6 here]

These graphs confirm that the difference of skewness between decile 10 (low diversification)

and decile 1 (high diversification) is always positive but that this difference appears to be higher in

bull market periods, namely, in the 5 first quarters and after quarter 20, that is, from the middle of

2003 to the end of 2006. This finding would be in complete agreement with our simulation results

provided in table 2, if we could demonstrate that systematic variance is higher (as a percentage of

total variance) in bear markets over our period of study (approximately between July 2000 up to

April 2003). In the following subsection, we duplicate the methodology of section 2.2 and apply it

to real stocks and investors to confirm this result.

4.2 Skewness, diversification and average correlation of returns

We decompose the period 1999-2006 in 32 quarters, with each of them being equivalent to a

simulated market of section 2.2. There are approximately 65 trading days per quarter; each

trading day is "equivalent" to a state of nature. Of course, the number of stocks held by at

least one investor is significantly greater than the number of days in a quarter. Consequently, in

addition to the general test with all stocks, we perform three other tests with different numbers of

stocks. More precisely, we select stocks that are held by 0.5%, 1% and 1.5% of investors in each

quarter. The aim of this selection process is to avoid "marginal stocks" held by a few investors

and to prevent drawing general conclusions driven by the behavior of the least frequently traded
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stocks. Moreover, we also exclude the most illiquid stocks for which the proportion of zero returns

is above 10% (Lesmond et al. 1999).

The results are summarized in table 7. The four panels are ranked according to the number of

stocks taken into account. In each panel, we report the average number of stocks across quarters.

For the constrained cases, the average number varies from 76 for stocks held by at least 1.5% of

investors to 162 for stocks held by 0.5% of investors. We observe high and significant negative

rank correlations in almost all cases, as in the simulation study. When all stocks are considered,

the rank correlation varies between -0.724 in the one-factor model and -0.774 in the three-factor

model. This variation is then extremely significant. However, even in the most constrained case

with 76 stocks, the correlation is around -0.5, which is also significant at all usual levels.

This finding confirms the mechanical link between the decrease in skewness due to diversification

and the variance due to common factors. A more synthetic statistic can be obtained by calculating

for each quarter the average correlation coeffi cient of stock returns and then to calculate the rank

correlation between the vector of average correlations and the vectors of decrease in skewness.

This rank correlation varies from -0.31 to -0.59 across the four subsets of stocks. In other words, a

strong link exists between skewness variation due to diversification choices and market conditions.

[Insert Table 7 here]

To complete our analysis, it is worth noting that the way in which we select stocks to produce

table 7 may be questioned. In fact, choosing stocks held by a minimum percentage of investors

biases the selection process towards diversified investors. In other words, doing so could eliminate

stocks that are prominently held by skewness seekers holding very underdiversified portfolios. In

short, our conclusion would be true but the behavioral interpretations of this conclusion could

be flawed. A way to address this problem is to duplicate the results of table 7 with randomly

chosen stocks. For panels A to C of table 7, we know the number of stocks in each quarter. Let ni

the number of stocks in quarter i for the panel under consideration. We draw stocks at random

(n1, ...., n32) and perform the same calculations as in table 7. We repeat 100 times the sequence,

evaluating the significance of the rank correlation in each simulation. Table 8 summarizes the
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results. Each panel provides the number of cases where the rank correlation is significant (it is

always negative) at the 1%, 5% and 10% levels. For example, considering the first factor in panel

A, 70 draws out of 100 give a significant correlation at the 1% level, 93 at the 5% level and,

finally, 96 at the 10% level. Comparable results are obtained for panels B and C. It turns out

that the decrease in skewness is more linked to diversification itself than to stock-picking skills by

underdiversified investors.

[Insert Table 8 here]

Using a different methodology, Mitton and Vorkink (2007) found that investors holding un-

derdiversified portfolios also pick highly skewed stocks. The above result does not support this

conclusion. Consequently, hereafter, we duplicate the methodology of Mitton and Vorkink to

evaluate our preceding result.

Mitton and Vorkink define a stock-specific statistic named SAID (security’s average investor

diversification), defined as follows:

SAIDl
k =

1

nk

∑nk

j=1
Dl
j (13)

where Dl
j denotes the l-th diversification measure of investor j. nk is the number of investors hold-

ing stock k. SAIDl
k is then the average diversification measure of stock-k holders. If undiversified

investors concentrate on highly skewed stocks, we should obtain a cross-sectional positive relation-

ship between SAID and the skewness of returns. Highly skewed stocks should attract undiversified

investors and increase the SAID of these stocks. Mitton and Vorkink (2007) obtain such a rela-

tionship by sorting stocks with respect to the variable SAID and by averaging skewness on single

stocks within deciles. When adopting the same approach, we do not obtain such a relationship in

all periods. To analyze this point more precisely, we calculate at the end of each year the cross-

sectional rank correlation between SAID and skewness. If high SAID is linked to high skewness,

the correlation should be significantly positive.

The results are reported in table 9, with the moments being calculated with one year of daily
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returns. The results are divided into four panels according to the diversification index (D1 or D2)

and the period over which the returns are considered (past or subsequent).

[Insert Table 9 here]

For example, in panel A, the line identified by the year 1999 illustrates the number of stocks

held by investors at the end of this year (column N), and ρ is the Spearman rank correlation

between SAID and the level of skewness over the set of N = 1042 stocks. The next columns

contain the p-value of ρ, and the median levels of skewness in deciles 1, 5 and 10.

We focus our comment on panels C and D related to D2 because it takes into account the

portfolio weights. There is a clear break in 2003, that is at the market reversal when the market

volatility began to decrease (and the idiosyncratic volatility started to increase). In the first part

of the period, there is a significant positive relationship between SAID andD2 meaning that people

are concentrating on highly skewed stocks. Following this, no significant link appears between the

two variables, which shows that we must be cautious before concluding that a part of investors

are gamblers, not only chasing skewness by underdiversification but also selecting highly skewed

stocks. This conclusion is not supported by our data and is clearly dependent on the evolution of

the market.

4.3 Portfolio value and diversification choices

Table 3 illustrates the strong link between diversification and portfolio value. Market imperfections

may be the source of the relationship between these two variables. If a per trade transaction cost is

borne by individual investors, it becomes very costly to manage a "diversified" portfolio of stocks

when the portfolio value is low. There is a strong incentive to focus on a low number of stocks.

According to Liu (2010), it is also optimal for "poor" investors to underdiversify if they are subject

to solvency constraints. Liu shows that below a given level of wealth, the optimal portfolio contains

only one stock. The optimal number of stocks then increases with wealth. Consequently, solvency

constraints can also explain the use of underdiversification among less wealthy investors.
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However table 6 shows that less diversified portfolios generate higher skewness in returns. This

phenomenon also appeared in our theoretical results in section 2.

To analyze more deeply the link between diversification and skewness seeking, it is necessary

to control for other possible reasons to underdiversify, especially transaction costs and solvency

constraints. The most natural means of doing so is to regress diversification measures on skewness,

controlling for portfolio values in a panel data setting with fixed effects11. The model we use is

the following:

Djt = aj + aSSkewnessjt + aP ln(Portfolio_V aluejt) + εjt (14)

where Skewnessjt is the skewness of past returns on the portfolio of investor j and Portfolio_V aluejt

is the portfolio value of investor j at the date Djt is measured, that is in the end of each quarter,

semester or year, depending on the periodicity of the analysis.

Panel data allow us to control for unobservable variables such as personality traits. In other

words, our model accounts for individual heterogeneity. Moreover, by using fixed effects, we explore

the relationship between skewness, portfolio value and diversification within individual investors.

Each investor has her own individual characteristics that may impact skewness, portfolio value or

diversification (for instance, an investor’s gender may influence the number of assets in a portfolio).

When using fixed effects, we remove the effect of these time-invariant characteristics from the

predictor variables and assess the net effect of predictors.

In table 10, we present quarterly, semi-annual and annual results over the period 1999-2006.

For example, for semi-annual results, return skewness is estimated over 6 months of daily returns,

and the panel data analysis is conducted over 16 semesters. For each period of time, the first

(second) column refers to D1 (D2) as the diversification index. N obs and N groups refer to the

number of rows and the number of individual investors (or individual portfolios). As our panel

is unbalanced, individual investors were present in 18.9 quarters, 9.6 semesters and 4.98 years on

average. In all models, the results are significant at the highest level. Three different measures of

the reliability of our results are provided: the F -statistic (testing whether the vector of regression

11We significantly reject the hypothesis of a random effect model (Hausman χ2 statistic is equal to 3358.10).
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coeffi cients is the null vector), and the R2s, overall, between and within, and finally the intraclass

correlation rho, that is the fraction of the variance that is due to differences across individuals.

The first three lines provide the regression coeffi cients of equation 14 with t-stats between

parentheses. For example, consider index D1 in the semi-annual analysis. There are 77253 portfo-

lios, F = 33895.41, the R
2
coeffi cients are equal to 0.3848 (within), 0.5339 (between) and 0.4847

(overall). The intercept is 1.6728, the coeffi cient of Portfolio_V alue is −0.1480 and the coeffi cient

of portfolio skewness is 0.0102.

The main comments are identical for the three analyses. First, all three coeffi cients are signif-

icant at the 1% level. The most significant variable is clearly Portfolio_V alue which has t-stats

varying from −162.25 to −287. According to table 3, the sign of the coeffi cient and the statistical

significance of this variable are not surprising. This result is in line with Liu’s model (2010) as less

wealthy investors subject to solvency constraints hold a portfolio containing a very low number of

stocks. This point was not considered by Mitton and Vorkink (2007). Moreover, it appears that

the coeffi cient of Portfolio_V alue has higher t-stats for D1 than for D2. Therefore, the impor-

tance of portfolio value in determining the diversification level is higher when only the number of

stocks is considered to measure diversification. This point is a supplementary argument in favor

of the fixed transaction cost and solvency constraint approach.

However, what is also important is that skewness is always significant, for either D1 or D2, and

that the regression coeffi cient is positive. Finally, the coeffi cient of Skewness has higher t-stats

for D2 than for D1. Considering different time-windows to estimate skewness does not change the

results, as seen in table 10. The regression coeffi cients are relatively stable across time-windows.

[Insert Table 10 here]

This stability means that, even after controlling for portfolio value, skewness remains significant

(with the expected sign) in explaining diversification choices.

Finally, table 11 gives panel results of the estimation of equation (14) with indicator functions

for semesters12. As coeffi cients for aj, aP and aS remain stable, we note that the coeffi cients of

12The results over quarters and years yield the ame conclusions and are available upon request.
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semester dummies reflect market trends. More precisely, all coeffi cients are negative but higher in

absolute value in bear markets. The interpretation is that portfolio diversification is decreasing

in bear markets, after controlling for portfolio value (which also decreases in bear markets) and

skewness of returns.

5 Concluding remarks

Building highly skewed portfolios may reveal either a propensity to gamble or prudent behavior.

In this paper, we first show analytically that diversification in Arrow-Debreu markets decreases

the variance but also the skewness of returns. We also show that this relationship between di-

versification and skewness remains true on average in markets where the primary investments are

portfolios of Arrow-Debreu securities.

We then analyze the behavior of a large sample of French individual investors and confirm

some of the empirical results obtained by Mitton and Vorkink (2007) on U.S. investors. A lack of

diversification provides higher skewness to investors at the expense of a higher variance of returns.

This result is consistent with our theoretical results. However, when assessing whether undiversified

investors concentrate on highly skewed stocks, we obtain unclear results. More precisely, the

Spearman rank correlation between diversification measures and the skewness of stock returns

does not present evidence of a persistent and significant relationship between these two variables.

To dig deeper into this relationship, we link the decrease in skewness due to diversification to the

share of variance explained by a given number of common factors. It turns out that the decrease

in skewness is a decreasing function of this share of variance. In other words, in bearish markets

characterized by a strong market factor and a high average correlation between stock returns,

underdiversification does not significantly improve the level of skewness in portfolio returns.

Finally, we test whether skewness remains significant in the explanation of diversification

choices after controlling for portfolio value. In fact, when investors do not invest much in the

stock market, managing a diversified portfolio is costly, and investors may find it optimal to focus

on a few stocks. Our panel data regression shows that this is the case; that is, portfolio value is
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the main determinant of diversification choices. Nevertheless, return skewness remains significant

after controlling for portfolio value and time (market) effects.

Our contribution in this paper goes beyond that of Mitton and Vorkink in several directions.

We first establish a theoretical link between diversification and skewness and then show that this

relationship depends on the "concentration" of the market, that is, the sharing of global variance

between idiosyncratic and systematic variance. We were able to analyze this aspect because of our

new database of individual investors, which covers an eight-year period including the bursting of

the dotcom bubble and the subsequent partial recovery.
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APPENDIX

Proof. of proposition 1 The first point is obvious since states are equally-likely. σ2i = E(X2
i )−

E(Xi)
2 = 1

n
− 1
n2
since Xm

i = Xi for any positive integer m. The third central moment is calculated

as follows

E
[
(Xi − µi)3

]
= E(X3

i )− 3µiE(X2
i ) + 3µ2iE(Xi)− µ3i (15)

=
1

n
− 3

1

n2
+ 3

1

n3
− 1

n3
=

1

n
− 3

n2
+

2

n3
(16)

=
(n− 1)(n− 2)

n3
(17)

Finally, we get cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj) = −1/n2 since XiXj ≡ 0 when i 6= j.

Proof. of proposition 2 Proposition 1 allows to write the covariance matrix of the n AD

securities payoffs as

Vn =
1

n
In −

1

n2
1(n,n) (18)

where In is the (n, n) identity matrix and 1(n,n) is a (n, n) matrix containing only ones. As pk =

1
k

∑k

i=1
Xi, we get

σ2k =
1

k2
1′(k)Vk1(k)

where 1(k) denotes a column vector of ones with k components and Vk the square matrix of the

first k rows and columns of Vn.

Equation (18) implies Vk = 1
n
Ik − 1

n2
1(k,k). We then write

σ2k =
1

k2
1′(k)Vk1(k) =

1

k2
1′(k)

(
1

n
Ik −

1

n2
1(k,k)

)
1(k) (19)

=
1

k2n
1′(k)Ik1(k) −

1

k2n2
1′(k)1(k,k)1(k) (20)

=
1

kn
− 1

n2
=

1

n

(
1

k
− 1

n

)
(21)

As expected, the variance of the equally-weighted portfolio decreases with the number of AD
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securities in the portfolio. The case k = n gives σ2n = 0 which is consistent withe fact that pn is a

risk-free portfolio paying 1/n in each state.

Proof. of proposition 3

s3k =
1

k3
E

[
(Y 3
k −

(
k

n

)3
− 3

(
k

n

)
Y 2
k + 3

(
k

n

)2
Yk

]
(22)

=
1

k3

[
k

n
−
(
k

n

)3
− 3

(
k

n

)2
+ 3

(
k

n

)3]
(23)

Rearranging terms leads to

s3k =
1

n3

[(n
k

)2
− 3

(n
k

)
+ 2

]
(24)

=
1

n3

[(n
k
− 1
)(n

k
− 2
)]

(25)
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Table 1

Second and third moments as a function of the number of Arrow-Debreu securities in the portfolio

The first column gives the number of Arrow-Debreu securities in portfolios, columns 2 and
3 provide the variance and third central moments of portfolio payoffs. Columns 4 to 6
are defined as columns1 to 3 for portfolios containing 11 to 19 Arrow-Debreu securities.

Number of
AD securities

σ2k (×103) s3k (×104)
Number of
AD securities

σ2k (×103) s3k (×104)

1 47.500 42.750 11 2.045 -0.019
2 22.500 9.000 12 1.667 -0.028
3 14.167 3.306 13 1.346 -0.031
4 10.000 1.500 14 1.071 -0.031
5 7.500 0.750 15 0.833 -0.028
6 5.833 0.389 16 0.625 -0.023
7 4.643 0.199 17 0.441 -0.018
8 3.750 0.094 18 0.278 -0.012
9 3.056 0.034 19 0.132 -0.006
10 2.500 0.000
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Figure 1
Evolution of standardized skewness as a function of the number of AD securities in the portfolio. In this example, n =
20.
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Table 2

Correlation between skewness decrease due to diversification and cumulated variance of common
factors

The table provides the cumulated percentage of variance for k factors and the Spearman rank correlation be-
tween the decrease in skewness due to diversification and the sum of the k first eigenvalues for k=1,..,5. Cor-
relations are calculated for 1,000 simulated markets. Panel A (B, C) corresponds to markets containing 20
(60, 100) assets with 20 (60, 100) states of nature. The variation of skewness is calculated as the differ-
ence between the average skewness of single stocks and the skewness of the equally-weighted market portfolio.

Number of factors (k) 1 2 3 4 5
Panel A: 1000 simulated markets, 20 assets

Cumulated variance (in %) 24.06 41.19 54.15 64.15 72.06
Rank Correlation -0.469 -0.443 -0.391 -0.317 -0.252

Panel B: 1000 simulated markets, 60 assets
Cumulated variance (in %) 14.27 24.79 33.14 40.04 45.88

Rank Correlation -0.496 -0.519 -0.488 -0.448 -0.414
Panel B: 1000 simulated markets, 100 assets

Cumulated variance (in %) 11.79 20.52 27.51 33.32 38.25
Rank Correlation -0.525 -0.568 -0.552 -0.515 -0.479
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Figure 2
The solid line gives the evolution of the average skewness of portfolios as a function of the number of Arrow-Debreu
securities in portfolios. Each point is the average over 1,000 simulated markets. The dashed lines represent the
corresponding 99% confidence bounds, that is the 5th lowest and highest skewness obtained over 1,000 simulations.
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Figure 3
The three curves represent respectively the time-series of the average number of stocks held by investors, and
the mean and median portfolio value. The period under consideration starts in January 1999 (month 1)
and ends in December 2006 (month 96). The upper dotted curve is the average number of stocks (×104).
The middle bold curve is the average portfolio value and the lower curve is the median portfolio value.
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Table 3

Descriptive statistics about portfolio values at three points in time
The table gives descriptive statistics about portfolios held by investors at three points in time, July
2000 (Panel A), July 2003 (Panel B) and July 2006 (Panel C). The first column gives the way port-
folios are categorized with respect to the number of stocks. Portfolios containing 6 to 9 stocks are
in the same category and portfolios with more than ten stocks are also grouped. The second column
shows the number of investors in each diversification group. The four last columns describe portfolio
values by providing the mean portfolio value, the first quartile, the median and the third quartile.

Number of
Stocks

Number of
Investors

Mean Port.
Value

1st quartile
Median Port.

Value
3rd quartile

Panel A: Portfolios as of July 2000
1 8, 956 6, 856.56 662.10 1, 571.00 3, 979.34
2 7, 007 9, 538.46 1, 778.26 3, 453.00 7, 497.21
3 5, 900 15, 786.24 3, 206.64 5, 817.43 11, 784.08
4 4, 731 18, 606.83 4, 708.57 8, 430.00 16, 186.30
5 3, 704 23, 432.00 6, 399.34 11, 004.70 20, 061.54

6 to 9 9, 688 37, 683.76 10, 097.43 17, 240.40 32, 473.37
More than 10 10, 791 98, 816.47 25, 711.11 46, 660.96 87, 891.66

All 50, 777 35, 992.91 3, 430.11 10, 254.33 28, 730.22
Panel B: Portfolios as of July 2003

1 13, 197 2, 535.42 250.20 603.20 1, 591.80
2 8, 927 4, 695.01 774.53 1, 646.20 3, 596.42
3 6, 815 7, 207.04 1, 444.63 2, 815.98 5, 973.14
4 5, 320 8, 368.42 2, 167.75 4, 178.13 8, 376.70
5 4, 097 12, 819.20 3, 099.98 5, 697.86 11, 416.66

6 to 9 10, 123 18, 788.08 5, 371.32 9, 649.33 18, 374.48
More than 10 10, 307 50, 762.58 14, 457.45 26, 714.47 50, 355.61

All 58, 786 15, 903.96 1, 248.30 4, 241.70 13, 318.64
Panel B: Portfolios as of July 2006

1 10, 426 4, 295.99 390.40 1, 003.00 2, 740.20
2 6, 913 8, 637.35 1, 279.61 2, 815.50 6, 401.13
3 5, 240 12, 643.92 2, 443.90 5, 106.74 11, 053.84
4 3, 987 17, 353.15 3, 943.36 7, 437.04 16, 041.48
5 3, 158 22, 100.53 5, 327.29 9, 986.42 19, 985.22

6 to 9 7, 678 33, 021.51 9, 095.00 16, 809.07 33, 416.07
More than 10 8, 096 88, 715.78 24, 546.38 46, 556.67 92, 137.80

All 45, 498 28, 166.44 2, 038.15 7, 324.47 23, 801.08
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Figure 4
Time-series of the number of monthly trades. The solid (dashed) line represents the evolution of purchases (sales)
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Table 4

Trades and holdings for stocks of the 6 main countries
Panel A indicates how trades are shared among the six most active countries of origin of traded
stocks. Panel B gives the number of investors in the database at the end of each year and the
percentage of investors holding stocks of the six countries coded as follows: FR = France, NL =
The Netherlands, US = United States, GB = United Kingdom, DE = Germany, IT = Italy. Per-
centages in a given line sum above 1 due to international diversification of some investors.

Panel A: Trades in stocks of the 6 main countries
Total FR NL US GB DE IT

Number of
stocks

2, 491 1, 191 34 1, 020 62 31 15

Number of
trades

8, 258, 809 7, 510, 017 366, 138 54, 881 27, 207 22, 849 5, 059

Panel B: Percentage of investors holding stocks of the 6 main countries
End of year Ninvestors FR NL US GB DE IT

1999 43, 638 98.32 6.10 4.50 1.48 2.64 0.27
2000 58, 699 96.93 23.37 3.90 3.04 2.05 0.23
2001 57, 587 97.16 21.74 3.61 1.52 2.02 1.29
2002 53, 040 97.06 21.33 3.85 1.64 1.85 0.61
2003 56, 952 96.97 21.05 3.97 1.61 1.19 0.70
2004 52, 050 97.17 20.21 3.89 1.72 1.17 0.41
2005 47, 937 97.82 13.82 3.30 1.80 1.19 0.08
2006 42, 100 98.13 14.69 2.75 2.18 0.98 0.14
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Table 5

Moments of subsequent returns of investors’portfolios sorted by diversification levels
This table provides the return statistics of portfolios held by investors over the quarter following portfolio for-
mation, Moments of returns are averaged within each decile of diversification (D1 on the left of the table and
D2 on the right). Column N provides the number of investors in deciles. Return (R) and standard devia-
tion (σ) are annualized. All moments, including skewness (Sk) are estimated on one quarter of daily data

Subsequent returns sorted on D1 Subsequent returns sorted on D2

July 00 N D1 R σ Sk N D2 R σ Sk
H Div. 4,055 0.044 -0.071 0.186 0.072 4,560 0.074 -0.052 0.174 0.096

2 4,003 0.074 -0.085 0.205 0.095 4,560 0.125 -0.081 0.202 0.126
3 4,535 0.102 -0.100 0.220 0.114 4,560 0.170 -0.093 0.221 0.134
4 4,622 0.135 -0.109 0.234 0.120 4,560 0.218 -0.111 0.237 0.140
5 3,194 0.167 -0.118 0.247 0.139 4,560 0.273 -0.117 0.254 0.162
6 3,640 0.200 -0.111 0.255 0.153 4,560 0.342 -0.121 0.273 0.166
7 4,643 0.250 -0.123 0.274 0.182 4,566 0.431 -0.165 0.297 0.163
8 5,730 0.333 -0.141 0.291 0.176 4,554 0.528 -0.149 0.316 0.189
9 6,618 0.500 -0.170 0.329 0.214 4,560 0.739 -0.259 0.381 0.141

L Div. 7,509 1.000 -0.218 0.401 0.255 7,509 1.000 -0.218 0.401 0.255
July 03 N D1 R σ Sk N D2 R σ Sk
H Div. 4,124 0.046 0.436 0.187 0.317 4,951 0.081 0.454 0.185 0.313

2 4,621 0.080 0.428 0.202 0.310 4,952 0.137 0.438 0.204 0.308
3 5,631 0.114 0.419 0.214 0.316 4,951 0.186 0.433 0.217 0.304
4 2,659 0.143 0.419 0.224 0.324 4,952 0.239 0.429 0.228 0.318
5 3,250 0.167 0.408 0.229 0.324 4,951 0.297 0.403 0.236 0.339
6 4,032 0.200 0.417 0.238 0.343 4,952 0.364 0.409 0.252 0.359
7 5,164 0.250 0.402 0.248 0.354 4,951 0.457 0.376 0.260 0.373
8 6,612 0.333 0.407 0.263 0.382 4,952 0.539 0.383 0.277 0.410
9 8,470 0.500 0.380 0.288 0.429 4,951 0.728 0.316 0.286 0.470

L Div. 11,403 1.000 0.331 0.330 0.536 11,403 1.000 0.331 0.330 0.536
July 06 N D1 R σ Sk N D2 R σ Sk
H Div. 3,343 0.046 0.151 0.148 -0.092 3,776 0.074 0.150 0.147 -0.100

2 3,541 0.080 0.164 0.158 -0.033 3,775 0.129 0.163 0.158 -0.052
3 2,516 0.106 0.162 0.164 -0.021 3,776 0.179 0.160 0.167 -0.033
4 3,723 0.135 0.164 0.171 -0.015 3,775 0.234 0.156 0.175 -0.002
5 2,389 0.167 0.165 0.175 0.032 3,776 0.297 0.164 0.184 0.018
6 3,083 0.200 0.158 0.183 0.026 3,775 0.368 0.156 0.193 0.039
7 3,862 0.250 0.160 0.190 0.059 3,776 0.468 0.149 0.202 0.070
8 5,036 0.333 0.148 0.202 0.060 3,775 0.553 0.138 0.213 0.100
9 6,487 0.500 0.133 0.221 0.120 3,776 0.765 0.157 0.227 0.205

L Div. 8,815 1.000 0.084 0.264 0.178 8,815 1.000 0.084 0.264 0.178
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Table 6
This table provides the return statistics of portfolios held by investors over the quarter preceding portfolio for-
mation, Moments of returns are averaged within each decile of diversification (D1 on the left of the table and
D2 on the right). Column N provides the number of investors in deciles. Return (R) and standard devia-
tion (σ) are annualized. All moments, including skewness (Sk) are estimated on one quarter of daily data

Past returns sorted on D1 Past returns sorted on D2

July 00 N D1 R σ Sk N D2 R σ Sk
H Div. 4,033 0.044 0.057 0.263 -0.086 4,383 0.073 0.066 0.239 -0.113

2 3,976 0.074 0.067 0.280 -0.046 4,384 0.123 0.065 0.272 -0.033
3 4,486 0.102 0.058 0.299 -0.006 4,383 0.167 0.049 0.291 0.001
4 4,516 0.135 0.050 0.315 0.030 4,384 0.214 0.043 0.310 0.035
5 3,102 0.167 0.033 0.328 0.051 4,383 0.267 0.028 0.332 0.062
6 3,553 0.200 0.036 0.341 0.077 4,384 0.335 0.026 0.356 0.081
7 4,412 0.250 -0.006 0.364 0.088 4,383 0.420 -0.009 0.388 0.089
8 5,394 0.333 0.002 0.384 0.113 4,384 0.526 -0.007 0.395 0.144
9 5,979 0.500 -0.034 0.423 0.154 4,383 0.738 -0.063 0.496 0.174

L Div. 6,666 1.000 0.002 0.484 0.205 6,666 1.000 0.002 0.484 0.205
July 03 N D1 R σ Sk N D2 R σ Sk
H Div. 4,131 0.046 0.978 0.232 -0.033 5,006 0.081 0.957 0.230 -0.040

2 4,644 0.080 0.964 0.252 0.023 5,007 0.138 0.966 0.256 0.021
3 5,660 0.114 0.958 0.266 0.053 5,006 0.187 0.967 0.270 0.058
4 2,672 0.143 0.944 0.279 0.083 5,007 0.240 0.956 0.286 0.108
5 3,268 0.167 0.932 0.285 0.111 5,006 0.299 0.946 0.297 0.134
6 4,067 0.200 0.949 0.296 0.140 5,007 0.366 0.956 0.319 0.178
7 5,250 0.250 0.931 0.311 0.161 5,006 0.459 0.940 0.332 0.228
8 6,717 0.333 0.930 0.333 0.212 5,007 0.540 0.910 0.357 0.239
9 8,649 0.500 0.891 0.369 0.279 5,006 0.729 0.856 0.370 0.294

Low Div. 11,585 1.000 0.755 0.413 0.343 11,585 1.000 0.755 0.413 0.343
July 06 N D1 R σ Sk N D2 R σ Sk
H Div. 3,372 0.046 -0.171 0.213 -0.376 3,816 0.074 -0.175 0.214 -0.383

2 3,571 0.080 -0.160 0.218 -0.336 3,816 0.129 -0.171 0.221 -0.340
3 2,542 0.106 -0.169 0.223 -0.312 3,816 0.179 -0.180 0.224 -0.307
4 3,762 0.135 -0.176 0.227 -0.295 3,816 0.234 -0.178 0.230 -0.276
5 2,421 0.167 -0.172 0.229 -0.275 3,817 0.297 -0.179 0.236 -0.258
6 3,120 0.200 -0.169 0.234 -0.246 3,816 0.369 -0.179 0.242 -0.215
7 3,897 0.250 -0.172 0.241 -0.213 3,816 0.470 -0.181 0.249 -0.184
8 5,073 0.333 -0.184 0.250 -0.183 3,816 0.555 -0.182 0.258 -0.157
9 6,587 0.500 -0.176 0.263 -0.127 3,816 0.767 -0.106 0.268 -0.080

L Div. 9,100 1.000 -0.084 0.295 -0.019 9,100 1.000 -0.084 0.295 -0.019
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Figure 5
Evolution of median portfolio skewness over the period 1999-2006 for deciles 1 (high diversifica-
tion identified by stars), 5 (squares) and 10 (low diversification, circles) for subsequent returns
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Figure 6
Evolution of median portfolio skewness over the period 1999-2006 for deciles 1 (high diversi-
fication identified by stars), 5 (squares) and 10 (low diversification, circles) for past returns
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Table 7

Rank correlations between the decrease in skewness due to diversification and the share of variance
on the common factors

The table provides the cumulated percentage of variance for k factors and the Spearman rank correlation be-
tween the variation of skewness and the sum of the k first eigenvalues for k=1,..,5. Correlations are cal-
culated for different subsets of stocks defined according to a minimum percentage (1.5, 1, 0.5 for Panels
A to C) of investors holding these stocks. Panel D is based on the complete set of stocks in each quar-
ter, that is stocks held by at least one investor. The variation of skewness is calculated as the difference
between the average skewness of single stocks and the skewness of the equally-weighted market portfolio.

Number of factors (k) 1 2 3 4 5
Panel A: 76 stocks (average) held by at least 1.5% of investors

Cumulated variance (in %) 31.78 40.22 46.02 50.72 54.79
Rank Correlation −0.567∗∗∗ −0.484∗∗∗ −0; 494∗∗∗ −0.466∗∗∗ −0.468∗∗∗

Panel B: 102 stocks (average) held by at least 1% of investors
Cumulated variance (in %) 28.54 36.52 42.14 46.70 50.66

Rank Correlation −0.636∗∗∗ −0.546∗∗∗ −0.481∗∗∗ −0.465∗∗∗ −0.441∗∗

Panel C: 162 stocks (average) held by at least 0.5% of investors
Cumulated variance (in %) 23.71 30.29 35.50 39.86 43.57

Rank Correlation −0.533∗∗∗ −0.611∗∗∗ −0.593∗∗∗ −0.540∗∗∗ −0.521∗∗∗

Panel D: all stocks
Cumulated variance (in %) 17.37 23.17 27.23 30.54 33.55

Rank Correlation −0.724∗∗∗ −0.75∗∗∗ −0.774∗∗∗ −0.768∗∗∗ −0.762∗∗∗
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Table 8

Percentages of significant rank correlations between the decrease in skewness due to diversification
and the share of variance on the common factors

The table contains three panels corresponding to the numbers of stocks of the three panels of the
preceding table. In each panel, we give the percentage of draws leading to a significant rank
correlation (at the 1, 5 and 10 percent levels) between the decrease in skewness and the share
of variance in the first 5 factors. The variation of skewness is calculated as the difference be-
tween the average skewness of single stocks and the skewness of the equally-weighted market portfolio.

Number of factors (k) 1 2 3 4 5
Panel A: 76 stocks (average) randomly chosen

Percentage of significant rank
correlations at the 1% level

70 57 52 45 44

Percentage of significant rank
correlations at the 5% level

93 85 76 76 76

Percentage of significant rank
correlations at the 10% level

96 91 88 87 86

Panel B: 102 stocks (average) randomly chosen
Percentage of significant rank
correlations at the 1% level

78 70 69 69 68

Percentage of significant rank
correlations at the 5% level

95 88 88 89 88

Percentage of significant rank
correlations at the 10% level

99 95 95 93 93

Panel C: 162 stocks (average) randomly chosen
Percentage of significant rank
correlations at the 1% level

84 85 79 76 75

Percentage of significant rank
correlations at the 5% level

97 97 97 91 90

Percentage of significant rank
correlations at the 10% level

99 98 99 97 97
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Table 9

Rank correlations between SAID of single stocks and skewness of returns

This table provides the Spearman rank correlation between the SAID and the skewness of one year of daily
returns. N is the number of stocks held at the end of the corresponding year. Rho is the Spearman rank
correlation coeffi cient between D and skewness. pval is the p-value of the correlation, The three last columns
give the median skewness in deciles 1 (high diversification), 5 (medium diversification) and 10 (low diversifi-
cation). Panels A and B refer to the diversification index D1 where in A (B) past(subsequent) returns are
considered to calculate skewness. Panels C and D are defined similarly but the diversification index is D2.

Panel A: Past returns D1 Panel B: Subsequent returns D1

N ρ pval Hdiv Mdiv Ldiv
1999 1042 0.02 0.60 0.36 0.58 0.51
2000 1232 0.03 0.24 0.34 0.49 0.46
2001 1318 0.08 0.00 0.21 0.22 0.43
2002 1296 0.06 0.02 0.14 0.30 0.32
2003 1239 0.02 0.49 0.53 0.41 0.40
2004 1196 -0.03 0.29 0.41 0.44 0.29
2005 1182 0.02 0.51 0.52 0.43 0.31
2006 1143 0.01 0.63 0.34 0.52 0.40

N ρ pval Hdiv Mdiv Ldiv
1141 0.06 0.04 0.34 0.61 0.46
1315 0.11 0.00 0.18 0.28 0.45
1315 0.08 0.00 0.17 0.20 0.39
1221 0.04 0.20 0.52 0.39 0.40
1189 -0.04 0.13 0.34 0.35 0.17
1142 -0.01 0.69 0.58 0.41 0.53
1165 0.01 0.86 0.52 0.50 0.39
1169 0.01 0.78 0.43 0.37 0.26

Panel C: Past returns D2 Panel D: Subsequent returns D2

N ρ pval Hdiv Mdiv Ldiv
1999 1042 0.04 0.23 0.37 0.70 0.66
2000 1232 0.06 0.04 0.34 0.49 0.45
2001 1318 0.12 0.00 0.16 0.37 0.43
2002 1296 0.08 0.00 0.14 0.24 0.33
2003 1239 0.03 0.35 0.45 0.46 0.40
2004 1196 -0.05 0.07 0.44 0.44 0.15
2005 1182 0.01 0.64 0.50 0.49 0.31
2006 1143 0.04 0.21 0.32 0.53 0.40

N ρ pval Hdiv Mdiv Ldiv
1141 0.08 0.01 0.32 0.45 0.47
1315 0.13 0.00 0.27 0.45 0.41
1315 0.11 0.00 0.16 0.25 0.35
1221 0.06 0.05 0.47 0.35 0.42
1189 -0.05 0.09 0.27 0.40 0.07
1142 0.01 0.81 0.55 0.40 0.48
1165 0.02 0.51 0.36 0.53 0.31
1169 0.03 0.32 0.42 0.28 0.23
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Table 10

Panel regression of diversification index on portfolio value and skewness of returns.

The six columns correspond to two diversification indices (D1 and D2) and three ways to calculate the skew-
ness of returns (with a quarter, a semester, or a year of daily data). The regression equation is the following :

Djt = aj + aSSkewnessjt + aP ln(PortfolioV aluejt) + εjt

aj denotes the intercept, aP is the coeffi cient of portfolio value and aS is the coeffi cient of skewness. Nobs is
the number of observations, that is the sum of the numbers of investors over the periods. Ngroups the num-
ber of different investors entering the analysis. Two different investors may stay in the database for different
time-lengths. R2 (within, between, overall) are the determination coeffi cients of the regression. F is the Fisher
statistic and rho denotes the intraclass correlation. As usual, *** denotes statistical significance at the 1% level.

Quaterly Half − yearly Y early
D1 D2 D1 D2 D1 D2

aj
1.6694∗∗∗

(372.96)
1.5633∗∗∗

(306.71)
1.6728∗∗∗

(332.70)
1.5610∗∗∗

(271.69)
1.6339∗∗∗

(271.82)
1.5380∗∗∗

(227.58)

aP
−.1474∗∗∗

(−287.00)
−.1260∗∗∗

(−215.48)
−.1480∗∗∗

(−258.33)
−.1259∗∗∗

(−192.45)
−.1440∗∗∗

(−212.05)
−.1238∗∗∗

(−162.25)

aS
.0081

∗∗∗

(41.57)
.0111∗∗∗

(54.75)
.0102∗∗∗

(32.77)
.0148∗∗∗

(45.52)
.0051∗∗∗

(10.62)
.0102∗∗∗

(20.16)
F 41793.16

∗∗∗
24745.08

∗∗∗
33895.41

∗∗∗
19887.69

∗∗∗
22636.72

∗∗∗
13738.01

∗∗∗

R2 within 0.3820 0.2900 0.3848 0.2868 0.3732 0.2778
R2 between 0.5452 0.4908 0.5339 0.4789 0.5050 0.4501
R2 overall 0.4894 0.4130 0.4847 0.4086 0.4716 0.3990
rho 0.7068 0.6796 0.7173 0.6878 0.7248 0.6967
N obs. 1549842 1549842 739317 739317 339125 339125
N groups 82110 82110 77253 77253 68204 68204
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Table 11

Panel regression of diversification index on portfolio value, skewness of returns and dummy
variables for semesters.

The two left columns correspond to diversification index D1 and the two right
columns to D2 (with associated t-statistics). The regression equation is the following:

Djt = aj + aSSkewnessjt + aP ln(PortfolioV aluejt) + a1S1 + a2S2.....+ εjt

aj denotes the intercept, aP is the coeffi cient of portfolio value and aS is the coeffi cient of skewness.
The variables St are indicator functions for the semesters. Nobs is the number of observations, that is
the sum of the numbers of investors over the periods. Ngroups the number of different investors en-
tering the analysis. Two different investors may stay in the database for different time-lengths. R2

(within, between, overall) are the determination coeffi cients of the regression. F is the Fisher statistic and
rho denotes the intraclass correlation. As usual, *** denotes statistical significance at the 1% level.

D1 t-stat D2 t-stat
aj 1.837∗∗∗ 330.63 1.705∗∗∗ 268.65
aP −0.160∗∗∗ −259.39 −0.1357∗∗∗ −193.23
aS 0.0134∗∗∗ 41.15 0.0180∗∗∗ 52.54
S1 −0.0341∗∗∗ −21.8 −0.0272∗∗∗ −15.93
S2 −0.0086∗∗∗ −5.85 −0.0123∗∗∗ −7.62
S3 −0.0197∗∗∗ −14.71 −0.0297∗∗∗ −19.94
S4 −0.0448∗∗∗ −36.12 −0.0526∗∗∗ −38.33
S5 −0.0635∗∗∗ −54.41 −0.0667∗∗∗ −51.39
S6 −0.0753∗∗∗ −67.03 −0.0788∗∗∗ −64.7
S7 −0.0989∗∗∗ −88.91 −0.0865∗∗∗ −71.6
S8 −0.1277∗∗∗ −112.92 −0.1168∗∗∗ −96.91
S9 −0.1152∗∗∗ −105.93 −0.1108∗∗∗ −96.63
S10 −0.0891∗∗∗ −86.76 −0.0891∗∗∗ −82.99
S11 −0.0687∗∗∗ −70.02 −0.0668∗∗∗ −65.36
S12 −0.0603∗∗∗ −63.82 −0.0592∗∗∗ −60.00
S13 −0.0418∗∗∗ −46.91 −0.040∗∗∗ −43.66
S14 −0.0255∗∗∗ −31.94 −0.0263∗∗∗ −31.85
S15 −0.0158∗∗∗ −24.31 −0.0135∗∗∗ −20.20
F 4412.72 2752.93

R2 within 0.4279 0.3242
R2 between 0.5385 0.4821
R2 overall 0.4948 0.4178
rho 0.733 0.699
N obs. 739317 739317
N groups 77253 77253
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