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ASYMPTOTICALLY STABLE DYNAMIC RISK ASSESSMENTS

KARL-THEODOR EISELE† AND MICHAEL KUPPER‡

Abstract

In this paper asymptotically stable risk assessments are studied. They are character-
ized by not being sensitive with respect to huge additional capital in the very far future.
Under the additional hypothesis of being locally continuous from below, these risk as-
sessments are exactly those which allow a robust representation with so-called local test
probabilities having a support with finite time horizon.

Time-consistent risk assessments can be constructed by composing a sequence of
generators. We give several conditions for the generators such that the resulting risk
assessments are indeed asymptotically stable.

Key words and phrases: asymptotic stability of risk assessments, construction by gen-
erators, local test probabilities, robust representation, time-consistency.
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1. Introduction

The starting point of this paper is the investigation of risk assessments which are not influenced
by statements like: "Far in the future I shall be extremely rich". Such assessments are called
asymptotically stable.

Risk assessments or its negative notation, the risk measures, have been widely studied since
the lighthouse paper of Artzner et al. in 1999 (see [2]). For a good list of articles about risk
assessments we refer to [1]. While first simple or dynamic risk assessments of random variables
have been studied, the focus of the investigations is now the dynamic assessments of processes
either with discret or continuous time space with finite or infinite time horizon, see for instance
[3], [4], [5], [14], [15], [6], [1], [12],[10].

In the first main result of this paper we characterize asymptotic stable risk assessments un-
der the additional assumption of local continuity from below by a robust representation. It
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turns out that the test probabilities of this representation are exactly the so-called local proba-
bilities whose support is restricted to a finite time horizon. This is equivalent to the fact that
the acceptance set of the risk assessment is closed in the weak topology created by local test
probabilities.

Using the property of time-consistency, we show in the second part of the paper how such
asymptotically stable risk assessments can be constructed out of a time sequence of generators
which have to satisfy a corresponding property of asymptotic stability. We also investigate
the case where the generators at time s are functionals of the next cumulative value Xs+1 and
the future increments whose influence is measured by a series of deterministic functions. A
condition for these functions is given which yields asymptotically stable risk assessments.

The structure of this paper is as follows. In Section 2 we give the main notation and defi-
nitions. The robust representation of asymptotically stable risk assessments is presented in the
Section 3. In Section 4 we construct dynamic risk assessments which are asymptotically safe
and finally give some examples in Section 5.

2. Preliminaries

Let N := {1, 2, . . . } and (Ω,F , (Ft)t∈N,P) be a filtered probability space. All relations between
random variables, stochastic processes or sets are understood to hold P-almost surely. As usual,
Lp (resp. Lpt ) is the Banach space of F-measurable (resp. Ft-measurable) random variables
Z with finite ‖.‖p-norm, where ‖Z‖p := (E[|Z|p])1/p for p < ∞ and ‖Z‖∞ := ess.sup |Z|.
By R∞ we denote the linear space of adapted processes X : Ω × N → R such that X∗ :=

supt∈N |Xt| ∈ L∞, with the partial order X ≥ Y whenever Xt ≥ Yt for all t ∈ N. Let A1

be the linear space of adapted processes a : Ω × N → R such that
∑

t∈N |∆at| ∈ L1, where
∆at := at − at−1 with the convention a0 = 0. Further, A1

+ denotes the set of those a ∈ A1

which are nondecreasing, A1
1 the set of those a ∈ A1

+ for which E
[∑

t∈N ∆at
]

= 1 and A1,loc

the set of those a ∈ A1 which are eventually constant, that is at = aT for all t ≥ T for some
time horizon T ∈ N. We set A1,loc

1 := A1,loc ∩A1
1. Elements of A1,loc

1 are regarded as local test
probabilities.
The linear spacesR∞ and A1 are in duality by the dual pairing

〈X, a〉 := E

[∑
t∈N

Xt∆at

]
.

For a ∈ A1,loc one has 〈X, a〉 :=
∑T

t=1 E [Xt∆at] for some T ∈ N.

Definition 2.1. A concave risk assessment on R∞ is a function φ : R∞ → R, which satisfies
for all X ∈ R∞
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(i) φ(0) = 0,

(ii) φ(X +m) = φ(X) +m for all m ∈ R,

(iii) φ(X) ≥ φ(Y ) whenever X ≥ Y ,

(iv) φ(λX + (1− λ)Y ) ≥ λφ(X) + (1− λ)φ(Y ) for all λ ∈ (0, 1).

If in addition to (i) – (iv), φ is positively homogeneous, i.e. φ(λX) = λφ(X) for all λ ≥ 0 then
φ is called coherent.

The acceptance set of a risk assessment φ is defined as C := {X ∈ R∞ : φ(X) ≥ 0}. For
every time horizon T ∈ N we define

R∞T := {X ∈ R∞ : Xt = XT for all t ≥ T}, and similarly (2.1)

A1
T := {a ∈ A1 : at = aT for all t ≥ T}. (2.2)

Definition 2.2. A risk assessment φ : R∞ → R is locally continuous from below, if

φ
(
Xn1I(0,T ) +Xn

T1I[T,∞)

)
→ φ

(
X1I(0,T ) +XT1I[T,∞)

)
.

for all T ∈ N and every sequence (Xn) inR∞T which increases to some X ∈ R∞T .

3. Asymptotically Stable Risk Assessments

In this paper we characterize risk assessments onR∞, which satisfy one of the following prop-
erties:

(A1) If X /∈ C then there exists a time horizon T ∈ N such that X1I(0,T ) +N1I[T,∞) /∈ C for all
N ∈ N.

(A2) γt(X) := supN∈N
[
φ(X1I(0,t) +N1I[t,∞))− φ(X)

]
→ 0 as t→∞.

Notice that (A1) is equivalent to the following statement: X ∈ C if and only if for any t ∈ N
there is N ∈ N such that X1I(0,t) + N1I[t,∞) ∈ C. Of course, the "only if" part of the statement
is the important one.
Risk assessments which satisfy (A1) have the desired property that an unacceptable position
cannot become acceptable by adding a huge cash-flow far in the future. Even though such risk
assessments neglect asymptotic benefits, they may take into account asymptotic losses.

Proposition 3.1. The conditions (A1) and (A2) are equivalent.
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Proof. Suppose that (A1) holds, but supt∈N γt(X) ≥ ε for some ε > 0. By the translation
property (ii) of the risk assessment we may assume that φ(X) = −ε/2 so that X /∈ C. Hence,
for any t ∈ N one has

sup
N∈N

φ(X1I(0,t) +N1I[t,∞)) = γt(X) + φ(X) ≥ ε

2
,

so that X1I(0,t) + N1I[t,∞) ∈ C for all t ∈ N and sufficiently large N ∈ N. Property (A1) yields
X ∈ C, which is a contradiction. Hence (A2) has to hold.

Conversely, suppose that (A2) holds and X /∈ C. Since

sup
N∈N

φ(X1I(0,t) +N1I[t,∞)) = γt(X) + φ(X), for all t ∈ N,

φ(X) < 0 and γt(X)→ 0, it follows that supN∈N φ(X1I(0,t0) +N1I[t0,∞)) < 0 for some t0 large
enough. Hence X1I(0,t0) +N1I(t0,∞) /∈ C for all N ∈ N, which shows (A1). �

The conditions (A1) or (A2) leads us to the following definition:

Definition 3.1. A concave risk assessment φ satisfying one of the equivalent conditions of (A1)
or (A2) is called asymptotically stable.

Generally speaking, the theory of robust representations of risk assessments yields with
formulas of the form

φ(X) = inf
a∈A
{〈X, a〉 − φ∗(a)} for all X, (3.1)

where the ’dual set’ A is a convex set of linear forms on the space where φ is defined, and the
conjugate function φ∗ is given by

φ∗(a) := inf
X∈R∞

{〈X, a〉 − φ(X)} = inf
X∈C
〈X, a〉 for all a ∈ A , (3.2)

and takes values in [−∞, 0]. The second equality in (3.2) is a consequence of the following
series of inequalities:

inf
X∈C
〈X, a〉 ≥ inf

X∈C
{〈X − φ(X), a〉} ≥ inf

X∈R∞
{〈X − φ(X), a〉} ≥ inf

X′∈C
〈X ′, a〉

because X − φ(X) ∈ C.
In our context, the robust representation of φ is given in the following theorem which is our
main result in the static case. It characterizes the property of asymptotical stability for risk
assessments which are locally continuous from below via the applications of local test proba-
bilities.

Theorem 3.2. Let φ : R∞ → R be a concave risk assessment which is locally continuous from
below. The following statements are equivalent:
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(i) φ is asymptotically stable.

(ii) The acceptance set C is σ
(
R∞,A1,loc

)
-closed.

(iii) φ is σ
(
R∞,A1,loc

)
-upper semicontinuous.

(iv) φ has a robust representation with local test probabilities:

φ(X) = inf
a∈A1,loc

1

{〈X, a〉 − φ∗(a)} (3.3)

for all X ∈ R∞.

(v) For any sequence (Xn) and X in R∞ such that Xn
t is bounded and Xn

t → Xt P-almost
surely for all t ∈ N, one has φ(X) ≥ lim supn→∞ φ(Xn).

Proof.
(i)⇒ (ii): We have to show that

X ∈ C ⇐⇒ 〈X, a〉 − φ∗(a) ≥ 0 for all a ∈ A1,loc
1 . (3.4)

That the left hand side implies the right hand side follows directly from the definition of φ∗.
The converse direction is more complicated and shown in the following six steps.

Step 1: If X /∈ C then by the translation property there exists ε ∈ (0, 1] with X + ε /∈ C, such
that by (A1) there exists t ∈ N such that

(X + ε)1I(0,t) + (N + 1)1I[t,∞) /∈ C for all N ∈ N. (3.5)

Step 2: Here we make a deviation to use the duality between L∞(Ω′,F ′) and the setMf (Ω′,F ′)
of finitely additive measures on some measurable space (Ω′,F ′). We follow [3], [5], [12], or
[1].

Set Ω′ := Ω×N, F ′ := σ {Fn × {n} : n ∈ N}, µ0(B) :=
∑

n≥1 2−nP(B|n) where B|n = {ω ∈
Ω : (ω, n) ∈ B} for B ∈ F ′. µ0 is a probability measure on (Ω′,F ′).
Further, let Mf

1 the set of positive finitely additive measures µ on (Ω′,F ′) with µ(Ω′) = 1

and µ(B × {n}) = 0 for all B ∈ Fn with P[B] = 0. Identifying X ∈ R∞ with X ′(ω, n) =

Xn(ω) ∈ L∞(Ω′,F ′) and writing simply 〈X,µ〉 instead of 〈X ′, µ〉, we get for φ′(X ′) = φ(X)

the representation (see [13])

φ(X) = φ′(X ′) = min
µ∈Mf

1

{〈X,µ〉 − φ′∗(µ)} .

where again φ′∗(µ) := infX∈C 〈X ′, µ〉 takes values in [−∞, 0].

Now the statement (3.5) implies the existence of a sequence µN inMf
1 with〈

(X + ε)1I(0,t) + (N + 1)1I[t,∞), µ
N
〉
− φ′∗(µN) < 0 for all N ∈ N. (3.6)
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Since φ′∗(µN) ≤ 0, it follows that〈
1IΩ×[t,∞), µ

N
〉
≤ ‖X‖R∞ + ε

N + 1
and 0 ≥ φ′∗(µN) ≥ −‖X‖R∞ for all N ∈ N. (3.7)

Step 3: Next we show that the sequence (µN) satisfies:

∀ η > 0,∀ Bκ ∈ F ′, Bκ ↗ Ω′ for κ→∞ ∃ N0, κ0 ∈ N, such that〈
1IBκ , µ

N
〉
≥ 1− η for all N ≥ N0 and κ ≥ κ0. (3.8)

Let η > 0 and Bκ ∈ F ′ be an increasing sequence of subsets of Ω′ with Bκ ↗ Ω′ for κ→∞.
By (3.7) we find N0 ∈ N such that

〈
1IΩ×[t,∞), µ

N
〉
≤ η for all N ≥ N0 and we take M ∈ N

with M ≥ ‖X‖R∞ /η. By the local continuity from below of φ we get

lim
κ→∞

inf
N≥N0

{〈
M1IBκ , µ

N
〉
− φ′∗(µN)

}
≥ lim

κ→∞
inf
N≥N0

{〈
M(1IBκ∩Ω×(0,t) + 1IΩ×[t,∞)), µ

N
〉
− φ′∗(µN)

}
−Mη

≥ lim
κ→∞

φ′(M(1IBκ∩Ω×(0,t) + 1IΩ×[t,∞)))−Mη

= lim
κ→∞

φ
(
M(1IBκ∩Ω×{1}, . . . , 1IBκ∩Ω×{t−1}, 1IΩ×{t}, . . .)

)
−Mη

= φ(M1I(0,∞))−Mη = M(1− η).

With the second inequality in (3.7), it follows that

1 ≥ lim
κ→∞

inf
N≥N0

〈
1IBκ , µ

N
〉
≥ 1− η − ‖X‖R∞ /M ≥ 1− 2η

This shows (3.8).

Step 4: In this step we prove

∀ η > 0, ∃ δ > 0 and N ∈ N, so that ∀D ∈ F ′ with sup
0≤N ′≤N

〈
1ID, µN

′
〉
< δ

implies
〈
1ID, µM

〉
< η for all M ∈ N. (3.9)

Assume that (3.9) does not hold. Then there exists η > 0 such that for all δN = η/2N there
exists DN ∈ F ′ with sup0≤N ′≤N

〈
1IDN , µ

N ′〉
< η/2N , but

〈
1IDN , µ

M
〉
≥ η for some M ∈ N.

We set Bκ := Ω′ \
⋃
N≥κDN such that µ0(Bκ) ≥ 1 − 2η/2κ or Bκ ↗ Ω′ for κ → ∞. (Here

we use the fact that µ0 is σ-additive, while µN are only finitely additive for for N ≥ 1). By
(3.8) there exist N0, κ0 ∈ N such that

〈
1IBκ , µM

〉
≥ 1 − η/2 for all M ≥ N0 and κ ≥ κ0.

Now for κ′ = max(N0, κ0) we find not only sup0≤N ′≤N

〈
1IB′

κ′
, µN

′
〉
< η/2κ

′ ≤ η/2, but also〈
1IB′

κ′
, µM

〉
≤ η/2 for all M ≥ κ′, contradicting the fact that we have

〈
1IB′

κ′
, µMκ′

〉
≥ η for

Mκ′ ∈ N. Thus assertion (3.9) is shown.

Step 5: We define µ :=
∑

N ′≥0 µ
N ′
/2N

′ and conclude for all η > 0 using δ > 0 and N from
(3.9): For any B′ ∈ F ′ with 〈1IB′ , µ〉 < δ/2N we have

〈
1IB′ , µN

′〉
< δ for all 0 ≤ N ′ ≤ N such

that
〈
1IB′ , µM

〉
< η for all M ∈ N, i.e.

lim
〈1IB′ ,µ〉→0

〈
1IB′ , µM

〉
→ 0 uniformly for all M. (3.10)
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By Theorem IV.9.12 in [9], the sequence (µM) is weakly sequentially compact and there exists
a subsequence of (µN) (again denoted by (µN)) such that (µN) converges weakly to some
µ̃ ∈Mf

1 .

Step 6: First (3.7) shows that
〈
1IΩ×[t,∞), µ̃

〉
= 0 and from (3.8) we conclude that for any η > 0

and any sequence Bκ ∈ F ′, Bκ ↗ Ω′ for κ → ∞ we have 〈1IBκ , µ̃〉 ≥ 1 − η for all sufficintly
large κ. Therefore µ̃ is a probability measure absolutely continuous w.r.t. µ0. Moreover, for
every ε′ > 0 there exists Y ∈ C ′ with

φ′∗(µ̃) ≥ 〈Y, µ̃〉 − ε′ = lim
N→∞

〈
Y, µN

〉
− ε′ ≥ lim inf

N→∞
φ′∗(µN)− ε′.

From (3.6) we conclude that 〈
X,µN

〉
− φ′∗(µN) < −ε

for all N ∈ N such that 〈X, µ̃〉 − φ′∗(µ̃) < 0. Transforming µ̃ back to ã ∈ A1
1 via the Radon-

Nikodym density ∆ãt := ∂µ̃(. ∩Ω×{t})
∂P restricted to Ω× {t}, we see that ã ∈ A1,loc

1 and

〈X, ã〉 − φ∗(ã) < 0.

This shows that C is σ(R∞,A1,loc)-closed.

(ii) ⇒ (iii): The σ
(
R∞,A1,loc

)
-upper semicontinuity follows directly from (ii) and the

translation invariance.

(iii)⇒ (iv): This follows from the Fenchel-Moreau theorem.

(iv) ⇒ (v): Fix ε > 0 and let (Xn) be a sequence in R∞ and X ∈ R∞ such that Xn
t is

bounded and Xn
t → Xt P-almost surely for all t ∈ N. There is a∗ ∈ A1,loc

1 such that

φ(X) + ε ≥ 〈X, a∗〉 − φ∗(a∗)

= lim
n→∞

(〈Xn, a∗〉 − φ∗(a∗))

≥ lim sup
n→∞

inf
a∈A1,loc

1

{〈Xn, a〉 − φ∗(a)} = lim sup
n→∞

φ(Xn).

(v) ⇒ (i): Let X ∈ R∞ such that X1I(0,t) + N(t)1I[t,∞) ∈ C for all t ∈ N and some large
N(t) ∈ N. The sequence (Xn)n∈N defined as

Xn := X1I(0,n) +N(n)1I[n,∞)

satisfies φ(Xn) ≥ 0 for all n ∈ N. Moreover Xn
t is bounded and Xn

t → Xt P-almost surely for
all t ∈ N. Hence

φ(X) ≥ lim sup
n→∞

φ(Xn) ≥ 0,

showing that X ∈ C. This is equivalent to (A1). �
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Remark 3.1. Let φ be a risk assessment which is locally continuous from below and has the
robust representation

φ(X) = inf
a∈A
{〈X, a〉 − φ∗(a)} for all X.

The arguments in step 3 of the implication (i) ⇒ (ii) above shows that for any γ > 0 the set
A γ := {a ∈ A : φ∗(a) ≥ −γ} is locally uniformly integrable in the following sense:
For all T ∈ N and all Bκ = (Bκ

1 , . . .) with Bκ
t ↗ Ω for all t ≤ T and Bκ

t = Ω for all t > T we
have

lim
κ→∞

inf
a∈A γ

〈1IBκ , a〉 = 1

where 1IBκ =
(
1IBκ1 , . . .

)
. Indeed, for every ε > 0 and M ≥ γ/ε we get

lim
κ→∞

inf
a∈A γ

〈1IBκ , a〉 ≥
1

M
lim
κ→∞

inf
a∈Aγ

(〈M · 1IBκ , a〉 − φ∗(a))− ε

≥ 1

M
lim
κ→∞

φ (M · 1IBκ)− ε = 1− ε.

A first example of a risk assessment which is asymptotically stable and locally continuous
from below is the following

Example 3.1. Let P be a uniformly integrable set of absolutely continuous probabilities and
T a subset of N. Then

φ(X) := inf
t∈T

inf
Q∈P

EQ [Xt]

is a coherent, asymptotically stable, and locally continuous from below risk assessment.

Let φ : R∞ → R be a risk assessment which is locally continuous from below and satisfies
(A1) (⇔ (A2)). Then it holds that

φ(X) = lim sup
t→∞

φ(X1I(0,t) +Xt1I[t,∞)) (3.11)

However, the following example shows that there exist asymptotically stable risk assessments
which are locally continuous from below, but φ(X) > lim inft→∞ φ(X1I(0,t) + Xt1I[t,∞)) for
some X ∈ R∞, i.e. the limes limt→∞ φ(X1I(0,t) + Xt1I[t,∞)) does not exist as the following
example shows:

Example 3.2. Suppose Ω = {ω} and φ(X) := infa∈Q 〈X, a〉 where

Q :=

{
a ∈ A1,loc

1 : ∆at = ∆at+1 =
1

2
for some t ∈ N

}
.

According to Theorem 3.2, φ is locally continuous from below and satisfies (A1) ⇔ (A2).
However, for X = (1,−1, 1,−1, 1, . . . ) one has φ(X) = 0, while lim inft→∞ φ(X1I(0,t) +

Xt1I[t,∞)) = −1. In particular, the limit limt→∞ φ(X1I(0,t) +Xt1I[t,∞)) does not exist.
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4. Dynamic Risk Assessments

In this section, we study families of risk assessments (φs)s∈N0 which are time-consistent, that is

φs(X) = φs
(
X1I(s,t] + φt(X)1(t,∞)

)
, for all s, t ∈ N with s < t. (4.1)

We here work with the notion of time-consistency as in [10] which is slightly different to the
respective notion in [5] and [1]. Since both concepts of time-consistency are formally very
similar, the results of this section can directly be adapted to the context of [5] and [1].

Time-consistent risk assessments lead naturally the the notion of a family of generators
Gs : L∞s+1 × L∞s+1 → L∞s by defining

Gs(Z
1, Z2) := φs

(
Z11I{s+1} + Z21I(s+1,∞)

)
. (4.2)

This gives

φs(X) = Gs (Xs+1, φs+1(X)) . (4.3)

Here the goal is to give conditions of a family (Gs)s∈N0 of generators which leads to asymptot-
ically stable and locally continuous from below risk assessments. We start with the following
properties of generators:

(G0) Gs(0, 0) = 0,

(G1) Gs(X +m,Y +m) = Gs(X, Y ) +m for all m ∈ L∞s ,

(G2) Gs(X
1, Y 1) ≥ Gs(X

2, Y 2) whenever X1 ≥ X2 and Y 1 ≥ Y 2,

(G3) Gs(X, Y ) = limn→∞Gs(X
n, Y n) for every decreasing sequence (Xn, Y n) which con-

verges to some (X, Y ) P-almost surely,

(G3’) Gs(X, Y ) = limn→∞Gs(X
n, Y n) for every increasing sequence (Xn, Y n) which con-

verges to some (X, Y ) P-almost surely,

(G4) Gs(λX
1 + (1− λ)X2, λY 1 + (1− λ)Y 2) ≥ λGs(X

1, Y 1) + (1− λ)Gs(X
2, Y 2) for all

λ ∈ L∞s with 0 ≤ λ ≤ 1.

Under the concavity assumption (G4) the condition (G3’) implies (G3).

ForX ∈ R∞, s ∈ N0 andN ≥ ‖X‖R∞ the sequence {Gs(Xs+1, ·)◦· · ·◦Gt−1(Xt, N)}t≥s+1

is decreasing in t and we define

φNs (X) := inf
t≥s+1

Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, N).
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Theorem 4.1. Suppose that the generators (Gs)s∈N0 satisfy (G0)–(G3) and

lim
n→∞

Gs(0, ·) ◦ · · · ◦Gs+n(0,m) = 0 for all m ≥ 0. (4.4)

Then, for every s ∈ N0, it holds

φs(X) := φNs (X) = φMs (X) for all M,N ≥ ‖X‖R∞ ,

and the family (φt)t∈N0 is time-consistent in the sense of (4.1). Further, φ0 satisfies the prop-
erties (i)–(iii) of Definition 2.1 and φ0(X) = limn→∞ φ0(Xn) for every decreasing sequence
(Xn) inR∞ such that Xn

t → Xt P-almost surely for all t ∈ N for some X ∈ R∞.
Under the additional assumption (G4), φ0 is a concave risk assessment.
If the generators satisfy (G3’) instead of (G3) then φ0 is locally continuous from below.

Remark 4.1. The condition (4.4) is for instance satisfied if for every ε > 0 there exists β(ε)

with 0 ≤ β(ε) < 1 such that Gs(0,m) ≤ β(ε)m for all m ≥ ε and Gs(0,m) ≤ ε whenever
m < ε for eventually all s.

Proof. We first show that the definition of φNs does not depend on N ≥ ‖X‖R∞ . To that end,
we fix X ∈ R∞ and M ≥ N ≥ ‖X‖R∞ . For every ε > 0 there exists t ∈ N such that

ε+ φN0 (X) ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N).

In view of (G1) it holds

Gt(N, ·) ◦ · · · ◦Gt′−1(N,M) = N +Gt(0, ·) ◦ · · · ◦Gt′−1(0,M −N)

for all t′ ≥ t+ 1. Thus, by condition (4.4), (G1) and (G2) there exists t′ ≥ t such that

φN0 (X) + 2ε ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N) + ε

≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(N, ·) ◦ · · · ◦Gt′−1(N,M)

≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ ,M)

≥ φM0 (X).

Since φN0 (X) ≤ φM0 (X) by (G2), we get φN0 (X) = φM0 (X), which shows that φ0 is well-
defined. The argumentation for φs works analogously, however t and t′ have to be chosen
Fs-measurable with values in N.

As for the time-consistency (4.1), the conditions (G2) and (G3) imply

φs
(
X1I(s,t] + φt(X)1I(t,∞)

)
=Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, φt(X))

=Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦
(

inf
t′≥t+1

Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ , N)

)
= inf

t′≥t+1
Gs(Xs+1, ·) ◦ · · · ◦Gt−1(Xt, ·) ◦Gt(Xt+1, ·) ◦ · · · ◦Gt′−1(Xt′ , N)

=φs(X),
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for all N ≥ ‖X‖R∞ .

To show that φ0 is continuous from above, let (Xn) be a decreasing sequence in R∞ such
that N := supn∈N ‖Xn‖R∞ < ∞ and Xn

t → Xt P -almost surely for all t ∈ N for some
X ∈ R∞. For every ε > 0 there exists a time horizon t ∈ N such that

φ0(X) + ε ≥ G0(X1, ·) ◦ · · · ◦Gt−1(Xt, N))

= lim
n→∞

G0(Xn
1 , ·) ◦ · · · ◦Gt−1(Xn

t , N)

≥ lim
n→∞

φ0(Xn).

On the other hand, φ0(Xn) ≥ φ0(X) for all n ∈ N, so that limn→∞ φ0(Xn) = φ0(X).

In case that the generators satisfy (G3’), for all T ∈ N we have

φ0(X1I(0,T ) +XT1I[T,∞)) = G0(X1, ·) ◦ · · · ◦GT−1(XT , XT ))

= lim
n→∞

G0(Xn
1 , ·) ◦ · · · ◦GT−1(Xn

T , X
n
T )

= lim
n→∞

φ0(Xn1I(0,T ) +Xn
T1I[T,∞))

for every sequence (Xn) in R∞T which increases to some X ∈ R∞T , which shows that φ0 is
locally continuous from below. �

Proposition 4.2. Suppose that the generators (Gs)s∈N0 satisfy (G0)–(G3’) and condition (4.4).
If in addition

lim sup
t→∞

sup
N∈N

Gt(0, N) <∞, (4.5)

then φ0 is asymptotically stable.

Proof. For every X ∈ R∞ and N ∈ N one has

φ0

(
X1I(0,t] +N1I(t,∞)

)
= φ0

(
X1I(0,t) + φt−1

(
X1I{t} +N1I(t,∞)

)
1I[t,∞)

)
≤ φ0

(
X1I(0,t) +Gt−1(‖X‖R∞ , ‖X‖R∞ +N)1I[t,∞)

)
≤ φ0

(
X1I(0,t) + [‖X‖R∞ +Gt−1(0, N)] 1I[t,∞)

)
for all t ∈ N. Hence, by (4.5) there exist t0 ∈ N and a constant C ∈ N such that

sup
N∈N

(
φ0

(
X1I(0,t) +N1I[t,∞)

)
− φ0(X)

)
≤ φ0

(
X1I(0,t) + (‖X‖R∞ + C) 1I[t,∞)

)
− φ0(X)

for all t ≥ t0. Since φ0 is continuous from above, the right hand side tends to zero as t goes to
infinity. Hence

lim
t→∞

sup
N∈N

(
φ0

(
X1I(0,t) +N1I[t,∞)

)
− φ0(X)

)
= 0,

showing that φ0 satisfies (A2). �
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5. Examples

In this section, we construct examples of generators which satisfy the conditions (G0)–(G3’),
(4.4) and (4.5). To that end, we consider generators of the form

Gs(X, Y ) := ψs (X + hs(Y −X)) , s ∈ N0, (5.1)

where ψs : L∞s+1 → L∞s such that

(p0) ψs(0) = 0,

(p1) ψs(Z +m) = ψs(Z) +m for all m ∈ L∞s ,

(p2) ψs(Z1) ≥ ψs(Z
2) whenever Z1 ≥ Z2,

(p3) ψs(Zn)→ ψs(Z) for every sequence (Zn) which increases to Z,

(p4) ψs(λZ1 + (1− λ)Z2) ≥ λψs(Z
1) + (1− λ)ψs(Z

2) for all λ ∈ L∞s with 0 ≤ λ ≤ 1,

and the function hs : R→ R satisfies

(h0) hs(0) = 0,

(h1) hs(z +m) ≤ hs(x) +m for all z ∈ R and m ≥ 0,

(h2) hs(z1) ≥ hs(z
2) whenever z1 ≥ z2,

(h3) hs is continuous,

(h4) hs is concave.

A straightforward application of Theorem 4.1, Remark 4.1 and Proposition 4.2 is then:

Proposition 5.1. Let (Gs)s∈N0 be a sequence of generators of the form (5.1) which satisfy
(p0)–(p4), (h0)–(h4), for every ε > 0 there exists 0 ≤ β(ε) < 1 such that hs(m) ≤ β(ε)m for
all m ≥ ε and h(m) ≤ ε whenever m < ε, and

lim sup
s→∞

sup
z∈N

hs(z) <∞.

Then the generators Gs satisfy (G0)–(G2), (G3’), (G4) and the corresponding concave risk
assessment φ0 is locally continuous from below and aymptotically stable.

Proof. Clearly, such generators Gs satisfy (G0) and (G1). As for the monotonicity (G2), for
X1 ≥ X2 and Y 1 ≥ Y 2 we have X2 + hs(Y

2 −X2) ≤ X1 + hs(Y
2 −X1) by (h1) so that

Gs(X
1, Y 1) = ψs(X

1 + hs(Y
1 −X1)) ≥ ψs(X

1 + hs(Y
2 −X1))

≥ ψs(X
2 + hs(Y

2 −X2)) = Gs(X
2, Y 2).
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To show (G3’) let (Xn, Y n) be a sequence which increases to (X, Y ). Then Xn+hs(Y
n−Xn)

increases to X + hs(Y −X) by (h1)–(h3) so that Gs(X
n, Y n) increases to Gs(X, Y ). By (p2)

and (h4), it holds that

ψs
(
λX1 + (1− λ)X2 + hs(λ(Y 1 −X1) + (1− λ)(Y 2 −X2))

)
≥ ψs

(
λX1 + (1− λ)X2 + λhs(Y

1 −X1) + (1− λ)hs(Y
2 −X2)

)
≥ λψs(X

1 + hs
(
Y 1 −X1)

)
+ (1− λ)ψs(X

2 + hs
(
Y 2 −X2)

)
,

which shows (G4).

Finally, that φ0 is an asymptotically stable risk assessment follows from Theorem 4.1 and
Proposition 4.2 since

Gs(0,m) = ψs(hs(m)) = hs(m)

implies (4.4) by Remark 4.1 and (4.5). �

Notice that Proposition 5.1 allows to construct time-consistent risk assessments which are
asymptotically stable. For instance, the generators

Gs(X, Y ) = ψs (X + hs(Y −X))

can be defined through the negative of a conditional risk measure ψs such as the entropic utility
function

ψs(Z) =
1

γ
log (E [exp(−γZ) | Fs])

with risk aversion parameter γ, and discounting functions such as

• hs(z) := −z−

• hs(z) = 1− exp(−z+)− z−,

where z+ := max(x, 0) and z− := max(−z, 0), and which both satisfy the assumptions of
Proposition 5.1. Alternatively, ψs could be chosen as the negative of the conditional Value at
Risk for which (p4) does not hold, or the conditional Average Value at Risk.
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